Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy
Abstract
:1. Introduction
- To precisely identify the presence of metastases from 96 × 96 px digital histopathology images.
- To build a model that can precisely predict metastasis growth in early stages for better treatment.
- Fine-tuning the DenseNet-169 model by batch normalization and weight optimization strategies for a more precise outcome.
- By incorporating the 1-cycle policy and FastAI, the training rate of the model would tremendously increase and assist in faster convergence towards the solution.
2. Literature Review
3. Methods and Materials
3.1. FastAI
3.2. 1-Cycle Policy
3.3. Gradient-Weighted Class Activation Mapping (GRAD-CAM)
- Our training method must be looked at
- We might have to collect additional data
- Maybe the model is not prepared yet for deployment
4. Proposed Method
4.1. Data Set Description and Pre-Processing
4.2. Data Pre-Processing and Augmentation
4.2.1. Random Rotation
4.2.2. Radom Crop
4.2.3. Random Flip
4.2.4. Random Lighting (Brightness, Contrast)
4.3. Layered Architecture
4.4. Initial Feature Weights Assignments
4.5. Weight Optimization
4.6. Hyperparameters
4.7. Implementation Environment
5. Results and Discussions
5.1. Confusion Matrix
- Random samples are predictions made on some random instances from the data.
- Most incorrectly labeled samples are the models predicted wrongly with a very high probability.
- The model predicted correctly with a very high probability is the most correctly labeled sample.
5.2. Performance Analysis with Past Studies
5.3. The ROC Curve and TTA
5.4. Practical Implication
6. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia, E.; Luna, I.; Persad, K.L.; Agopsowicz, K.; Jay, D.A.; West, F.G.; Hitt, M.M.; Persad, S. Inhibition of triple negative breast cancer metastasis and invasiveness by novel drugs that target epithelial to mesenchymal transition. Sci. Rep. 2021, 11, 11757. [Google Scholar] [CrossRef]
- Aswathy, M.A.; Jagannath, M. Detection of breast cancer on digital histopathology images: Present status and future possibilities. Inform. Med. Unlocked 2017, 8, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Jiang, F.; Ma, Y.; Wang, J.; Li, H.; Zhang, J. Isolation and Detection Technologies of Extracellular Vesicles and Application on Cancer Diagnostic. Dose-Response 2019, 17, 1559325819891004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Nguyen, L.T.; Hickey, R.; Walters, N.; Wang, X.; Kwak, K.J.; Lee, L.J.; Palmer, A.F.; Reátegui, E. Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids. Sci. Rep. 2021, 11, 8034. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, W.; Plock, J.A. Breast Cancer Metastasis. In Introduction to Cancer Metastasis; Academic Press: Cambridge, MA, USA, 2017; p. 13. [Google Scholar]
- Walters, N.; Nguyen, L.T.; Zhang, J.; Shankaran, A.; Reátegui, E. Extracellular vesicles as mediators of in vitro neutrophil swarming on a large-scale microparticle array. Lab Chip 2019, 19, 2874–2884. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, Y.; Zhao, H.; Yuan, Y.; Kim, B.Y.S. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1590. [Google Scholar] [CrossRef]
- Weigelt, B.; Peterse, J.L.; van Veer, L.J. Breast cancer metastasis: Markers and models. Nat. Rev. Cancer 2005, 5, 591–602. [Google Scholar] [CrossRef]
- Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.U.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic Behavior of Breast Cancer Subtypes. J. Clin. Oncol. 2010, 28, 3271–3277. [Google Scholar] [CrossRef]
- Pham, H.H.N.; Futakuchi, M.; Bychkov, A.; Furukawa, T.; Kuroda, K.; Fukuoka, J. Detection of Lung Cancer Lymph Node Metastases from Whole-Slide Histopathologic Images Using a Two-Step Deep Learning Approach. Am. J. Pathol. 2019, 189, 2428–2439. [Google Scholar] [CrossRef]
- Holmström, O.; Linder, N.; Moilanen, H.; Suutala, A.; Nordling, S.; Ståhls, A.; Lundin, M.; Diwan, V.; Lundin, J. Detection of breast cancer lymph node metastases in frozen sections with a point-of-care low-cost microscope scanner. PLoS ONE 2019, 14, e0208366. [Google Scholar] [CrossRef] [Green Version]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Niwas, S.I.; Palanisamy, P.; Sujathan, K.; Bengtsson, E. Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using complex Daubechies wavelets. Signal Processing 2013, 93, 2828–2837. [Google Scholar]
- Wang, H.; Cruz-Roa, A.; Basavanhally, A.; Gilmore, H.; Shih, N.; Feldman, M.; Tomaszewski, J.; Gonzalez, F.; Madabhushi, A. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging 2014, 1, 034003. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Verma, S.; Kavita; Khan, M.S.; Wozniak, M.; Shafi, J.; Ijaz, M.F. A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics 2021, 11, 2017. [Google Scholar] [CrossRef]
- Abas, F.S.; Gokozan, H.N.; Goksel, B.; Otero, J.J.; Gurcan, M.N. Intraoperative neuropathology of glioma recurrence: Cell detection and classification. In Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging, San Diego, CA, USA, 27 February–3 March 2016; p. 979109. [Google Scholar]
- Valkonen, M.; Kartasalo, K.; Liimatainen, K.; Nykter, M.; Latonen, L.; Ruusuvuori, P. Metastasis detection from whole slide images using local features and random forests. Cytom. Part A 2017, 91, 555–565. [Google Scholar] [CrossRef]
- Lo, S.-C.; Lou, S.-L.; Lin, J.-S.; Freedman, M.; Chien, M.; Mun, S. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 1995, 14, 711–718. [Google Scholar] [CrossRef]
- Howard, J.; Gugger, S. Fastai: A layered API for DL. Information 2018, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Ciresan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. Adv. Neural Inf. Processing Syst. 2012, 25, 1–9. [Google Scholar]
- Shin, J.Y.; Tajbakhsh, N.; Hurst, R.T.; Kendall, C.B.; Liang, J. Automating Carotid Intima-Media Thickness Video Interpretation with Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2526–2535. [Google Scholar] [CrossRef] [Green Version]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H. Brain tumor segmentation with Deep Neural Networks. Med Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zheng, Y.; Carneiro, G.; Yang, L. DL and Convolutional Neural Networks for Medical Image Computing; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bianconi, F.; Álvarez-Larrán, A.; Fernández, A. Discrimination between tumour epithelium and stroma via perception-based features. Neurocomputing 2015, 154, 119–126. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R. Breast cancer detection from histopathology images with deep inception and residual blocks. Multimed. Tools Appl. 2022, 81, 5849–5865. [Google Scholar] [CrossRef]
- Basak, H.; Kundu, R.; Singh, P.K.; Ijaz, M.F.; Wozniak, M.; Ram, S. A union of deep learning and swarm-based optimization for 3D human action recognition. Sci. Rep. 2022, 12, 5494. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 630–645. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Misra, D. Mish: A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, International Society for Optics and Photonics; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11006, p. 1100612. [Google Scholar]
- Ciresan, D.C.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In Medical Image Computing and Computer-Assisted Intervention–MICCAI; Springer: Berlin/Heidelberg, Germany, 2013; pp. 411–418. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Bray, F.; McCarron, P.; Parkin, D.M. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res. 2004, 6, 229–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, J.S.; Alvarez, C.; Milikowski, C.; Olson, N.; Russo, I.; Russo, J.; Glass, A.; Zehnbauer, B.A.; Lister, K.; Parwaresch, R. Breast carcinoma malignancy grading by Bloom–Richardson system vs pro-liferation index: Reproducibility of grade and advantages of proliferation index. Mod. Pathol. 2005, 18, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.A.; Suman, V.J.; Davidson, N.E.; Martino, S.; Kaufman, P.A.; Lingle, W.L.; Flynn, P.J.; Ingle, J.N.; Visscher, D.; Jenkins, R.B. HER2 testing by local, central, and reference laboratories in speci-mens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. J. Clin. Oncol. 2006, 24, 3032–3038. [Google Scholar] [CrossRef]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef]
- Rakha, E.A.; Reis-Filho, J.S.; Baehner, F.; Dabbs, D.J.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wolff, A.C.; Hammond, M.E.H.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; Dowsett, M.; Fitzgibbons, P.L.; Hanna, W.M.; Langer, A.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 2007, 131, 18–43. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.E.H.; Hayes, D.F.; Wolff, A.C.; Mangu, P.B.; Temin, S. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. J. Oncol. Pract. 2010, 6, 195–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naga Srinivasu, P.; Ahmed, S.; Alhumam, A.; Kumar, A.B.; Ijaz, M.F. An AW-HARIS based automated segmentation of human liver using CT images. Comput. Mater. Contin. 2021, 69, 3303–3319. [Google Scholar] [CrossRef]
- Aurelia, B.; Pertusa, A.; Salinas, J.-M.; de la Iglesia-Vayá, M. Padchest: A large chest x-ray image da-taset with multi-label annotated reports. Med. Image Anal. 2020, 66, 101797. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A DL framework for semantic seg-mentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Clayton, J.; Khadka, B.; Basnet, R.B.; Doleck, T. Towards Detecting and Classifying Malicious URLs Using DL. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 2020, 11, 31–48. [Google Scholar]
- Alves, A.N.; Souza, W.S.; Borges, D.L. Cotton pests classification in field-based images using deep residual networks. Comput. Electron. Agric. 2020, 174, 105488. [Google Scholar] [CrossRef]
- Lau, S.L.H.; Chong, E.K.P.; Yang, X.; Wang, X. Automated Pavement Crack Segmentation Using U-Net-Based Convolutional Neural Network. IEEE Access 2020, 8, 114892–114899. [Google Scholar] [CrossRef]
- Jena, A.K.; Sinha, A.; Agarwal, R. C-net: Contextual network for sarcasm detection. In Proceedings of the Second Workshop on Figurative Language Processing, Online, 23 April 2020; pp. 61–66. [Google Scholar]
- Jiao, Y.; Li, J.; Qian, C.; Fei, S. DL-based tumor microenvironment analysis in colon adenocarci-noma histopathological whole-slide images. Comput. Methods Programs Biomed. 2021, 204, 106047. [Google Scholar] [CrossRef]
- Muhammad, F.; Hafeez, A. COVID-resnet: A DL framework for screening of COVID-19 from radiographs. arXiv 2020, arXiv:2003.14395. [Google Scholar]
- Srinivasu, P.N.; Rao, T.S.; Balas, V.E. Volumetric Estimation of the Damaged Area in the Human Brain from 2D MR Image. Int. J. Inf. Syst. Model. Des. 2020, 11, 74–92. [Google Scholar] [CrossRef]
- Yadav, S.S.; Jadhav, S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J. Big Data 2019, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Seixas, J.L.; Mantovani, R.G. Decision Trees for the Detection of Skin Lesion Patterns in Lower Limbs Ulcers. In Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2018; pp. 677–681. [Google Scholar]
- Hamad, M.A.; Zeki, A.M. Accuracy vs. Cost in Decision Trees: A Survey. In Proceedings of the 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier, Bahrain, 18–20 November 2018; pp. 1–4. [Google Scholar]
- Hsu, W. Bayesian Classification. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Tahmassebi, A.; Gandomi, A.H.; Schulte, M.H.J.; Goudriaan, A.E.; Foo, S.; Meyer-Baese, A. Optimized Naive-Bayes and Decision Tree Approaches for fMRI Smoking Cessation Classification. Complexity 2018, 2018, 1–24. [Google Scholar] [CrossRef]
- Doyle, S.; Feldman, M.; Tomaszewski, J.; Madabhushi, A. A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans. Biomed. Eng. 2012, 59, 1205–1218. [Google Scholar] [CrossRef]
- Wang, C.; Chen, D.; Hao, L.; Liu, B.X.; Zeng, C.Y.; Zhang, E.G. Pulmonary Image Classification Based on Inception-v3 Transfer Learning Model. IEEE Access 2019, 7, 146533–146541. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, M. Mobile Video Object Detection with Temporally-Aware Feature Maps. In Proceedings of the 2018 IEEE/Cvf Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5686–5695. [Google Scholar]
- Sumithra, R.; Suhil, M.; Guru, D. Segmentation and Classification of Skin Lesions for Disease Diagnosis. Procedia Comput. Sci. 2015, 45, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Munia, T.T.K.; Tavakolian, K.; Vasefi, F.; MacKinnon, N.; Fazel-Rezai, R. Automatic detection and severity measurement of eczema using image processing. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1365–1368. [Google Scholar]
- Hameed, N.; Shabut, A.M.; Hossain, M.A. Multi-Class Skin Diseases Classification Using Deep Convolutional Neural Net-work and Support Vector Machine. In Proceedings of the 12th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), Phnom Penh, Cambodia, 3–5 December 2018; pp. 1–7. [Google Scholar]
- Mehdy, M.M.; Ng, P.Y.; Shair, E.F.; Saleh, N.I.M.; Gomes, C. Artificial Neural Networks in Image Processing for Early Detection of Breast Cancer. Comput. Math. Methods Med. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Noord, N.; Postma, E. Learning scale-variant and scale-invariant features for deep image classification. Pattern Recognit. 2017, 61, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Scherf, M.; Brauer, W. Feature selection by means of a feature weighting approach. In Forschungsber-ichte Kunstliche Intelligenz, Institut fur Informatik; Technische Universitat Munchen: Munich, Germany, 1997. [Google Scholar]
- Another Data Science Student’s Blog—The 1cycle Policy. Available online: sgugger.github.io (accessed on 16 March 2022).
- Jin, Y.W.; Jia, S.; Ashraf, A.B.; Hu, P. Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients. Cancers 2020, 12, 2934. [Google Scholar] [CrossRef]
- Kaggle: Your Machine Learning and Data Science Community. Available online: https://www.kaggle.com (accessed on 12 March 2022).
- Srinivasu, P.N.; Bhoi, A.K.; Jhaveri, R.H.; Reddy, G.T.; Bilal, M. Probabilistic Deep Q Network for real-time path planning in censorious robotic procedures using force sensors. J. Real Time Image Process. 2021, 18, 1773–1785. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Kostoulas, P.; Doi, S.A. A new method for synthesizing test accuracy data outperformed the bivariate method. J. Clin. Epidemiol. 2021, 132, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Singh, P.K.; Ijaz, M.F.; Shafi, J.; Sarkar, R. A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification. Sensors 2021, 21, 5571. [Google Scholar] [CrossRef]
- Sun, D.; Wang, M.; Li, A. A Multimodal Deep Neural Network for Human Breast Cancer Prognosis Prediction by Integrating Multi-Dimensional Data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 16, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Ghongade, R.D.; Wakde, D.G. Detection and classification of breast cancer from digital mammograms using RF and RF-ELM algorithm. In Proceedings of the 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), Kolkata, India, 28–29 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, L.Q.; Wu, X.L.; Huang, S.Y.; Wu, G.G.; Ye, H.R.; Wei, Q.; Bao, L.Y.; Deng, Y.B.; Li, X.R.; Cui, X.W.; et al. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning. Radiology 2020, 294, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.F.; Attique, M.; Son, Y. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods. Sensors 2020, 20, 2809. [Google Scholar] [CrossRef]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef]
Approach | Objective | Challenges of the Approach |
---|---|---|
Genetic Algorithm (GA) [50,51] | A genetic algorithm selects the beginning population at random through a probabilistic approach. It performs crossover and mutation processes concurrently until the necessary portions are reached. | The algorithm fails in producing the best output and is more time-consuming. |
Fully Convolutional Residual Network (FCRN) [52] | FCRN technique employs encoder and decoder layers for image classification that use low-high level features. The feature processing is exceptionally important for the appropriate classification. | A completely Conventional Layer handles overfitting well, yet the model is complex in design and implementation. Adding batch normalization might also make the model less efficient. |
Decision Tree (DT) [53,54] | Handling discrete data necessitates the usage of models based on decision trees which is a rule-based technique for predictions. It is effective in dealing with non-linear factors. | The Decision Tree model is unreliable if the input data is changed even by a small proportion, and at times DT models will lead to overfitting while training. |
Bayesian Learning (BL) [55,56,57] | The Bayesian Learning technique effectively manages continuous and discrete data by avoiding the incorrect binary and multi-class classification characteristics. | The Bayesian Classifier is often an improper probabilistic model since it is unsuited for unsupervised learning applications. |
Deep Neural Networks [58,59] | Deep Neural Networks may process structured and unstructured data. Models are capable of working with unlabelled data and delivering the expected results. | DNN model is a black-box decision model, and models are complex and need tremendous development efforts. |
K-Nearest Neighbourhood [60] | KNN based models work on unlabelled data and classify data into different categories using feature selection and similarity matching. These models use the distance between two instances to identify their correlation. | The trained model’s accuracy is closely related to the quality of the data used to train it. In addition, the time needed to make a forecast may be much longer if the sample size is bigger. |
Support Vector Machine [61,62] | Support Vector Machine is a data processing system that uses as little computing and memory as possible. | It is difficult to determine the feature-based parameters using the Support Vector Machine method, which is inefficient for noisy data. |
Artificial Neural Networks [63,64] | Linear relationships between dependent and independent parameters may be easily recognized using Artificial Neural Networks, storing data across the network nodes. | Using Artificial Neural Network models is a good way to deal with a lack of knowledge of the issue. There is a good chance that the ANN will miss the spatial elements of the picture. The gradient’s diminishment and explosion are also major concerns. |
Description | Specification |
---|---|
Format | TIF |
Input Size | 96 × 96 |
Number of Channels | 3 |
Bits per Channel | 8 |
Data Type | Unsigned Char |
Image Compression Approach | Jpeg |
Layer | Kernel Size | Parameters | Tensor Size |
---|---|---|---|
Convolution | 7 × 7 (Conv) | Stride = 2, ReLu | 112 × 112 |
Pooling | 3 × 3 (MaxPool) | Stride = 2 | 56 × 56 |
Dense-1 Layer | 1 × 1 × 6 (Conv) 3 × 3 × 6 (Conv) | Dropout = 0.2 | 56 × 56 |
Transition-1 Layer | 1 × 1 (Conv) 2 × 2 (AvgPool) | Stride = 2 | 56 × 56 28 × 28 |
Dense-2 block | 1 × 1 × 12 (Conv) 3 × 3 × 12 (Conv) | Dropout = 0.2 | 28 × 28 |
Transition-2 Layer | 1 × 1 (Conv) 2× 2 (AvgPool) | Stride = 2 | 28 × 28 14 × 14 |
Dense-3 Layer | 1 × 1 × 32 (Conv) 3 × 3 × 32 (Conv) | Dropout = 0.2 | 14 × 14 |
Transition-3 Layer | 1 × 1 (Conv) 2× 2 (AvgPool) | Stride = 2 | 14 ×14 7 × 7 |
Dense-4 Layer | 1 × 1 × 32 (Conv) 3 × 3 × 32 (Conv) | Dropout = 0.2 | 7 × 7 |
Classification Layer | 1 × 1 (Global AvgPool) 1000D (fully-connected softmax) | 1 × 1 |
Training | Testing | |||
---|---|---|---|---|
Loss | Accuracy | Loss | Accuracy | |
CNN [69] | 0.124 | 92.25 | 0.565 | 81.93 |
CNN + Augmentation [69] | 0.164 | 93.82 | 0.621 | 82.13 |
VGG-16 [69] | 0.008 | 99.75 | 0.290 | 79.00 |
ConcatNet [69] | 0.108 | 95.90 | 0.435 | 86.23 |
DenseNet-169 | 0.152 | 94.61 | 0.411 | 95.57 |
Fine-tuned DenseNet-169 | 0.123 | 95.45 | 0.125 | 97.45 |
Environment Details | Specifications |
---|---|
Operating System | Microsoft Windows 11 |
Processor | Intel(R) Core (TM) i7-8750H |
Architecture | 64-Bit |
Memory Allotted | 3 GB |
GPU | Nvidia (TM) 1050 Ti |
Language | Python |
Framework | FastAI, PyTorch, DL |
Libraries Used | Pandas, Numpy, cv2, Matplotlib, Scikit-learn, os |
Accuracy | Sensitivity | Specificity | F1-Score | Precision | |
---|---|---|---|---|---|
Logistic regression [17] | 87.0 | 86.4 | 87.6 | 0.87 | - |
NN [17] | 82.8 | 74.4 | 91.0 | 0.81 | - |
NN feature subset [17] | 91.3 | 85.7 | 96.8 | 0.91 | - |
Random Forest [17] | 93.0 | 92.6 | 93.3 | 0.93 | - |
SVM [17] | 88.3 | 85.9 | 90.6 | 0.88 | - |
CNN [61] | 76.4 | 74.6 | 80.4 | - | - |
CNN + Augmentation [61] | 78.8 | 80.2 | 81.4 | - | - |
VGG-16 [61] | 76.5 | 75.3 | 82.6 | - | - |
ConcatNet [61] | 84.1 | 82.0 | 87.8 | - | - |
Multimodal Deep Neural Networks [74] | 79.4 | 80.0 | - | - | 0.875 |
SVM [74] | 77.5 | 87.8 | - | - | 0.811 |
RF [74] | 77.0 | 90.2 | - | - | 0.787 |
RF [75] | 80.1 | 91.0 | - | - | - |
LR [74] | 75.4 | 96.3 | - | - | 0.563 |
Inception V3 [76] | 80.5 | 82.0 | 79.0 | 0.81 | - |
Inception-RestNet V2 [76] | 82.0 | 80.0 | 85.0 | 0.82 | - |
ResNet-101 [76] | 78.0 | 78.0 | 79.0 | 0.78 | - |
DenseNet-169 | 95.5 | 93.1 | 97.1 | 0.94 | 0.971 |
Fine-tuned DenseNet-169 | 96.7 | 95.2 | 97.8 | 0.96 | 0.978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulli, A.; Srinivasu, P.N.; Sashank, M.S.K.; Shafi, J.; Choi, J.; Ijaz, M.F. Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy. Sensors 2022, 22, 2988. https://doi.org/10.3390/s22082988
Vulli A, Srinivasu PN, Sashank MSK, Shafi J, Choi J, Ijaz MF. Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy. Sensors. 2022; 22(8):2988. https://doi.org/10.3390/s22082988
Chicago/Turabian StyleVulli, Adarsh, Parvathaneni Naga Srinivasu, Madipally Sai Krishna Sashank, Jana Shafi, Jaeyoung Choi, and Muhammad Fazal Ijaz. 2022. "Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy" Sensors 22, no. 8: 2988. https://doi.org/10.3390/s22082988
APA StyleVulli, A., Srinivasu, P. N., Sashank, M. S. K., Shafi, J., Choi, J., & Ijaz, M. F. (2022). Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy. Sensors, 22(8), 2988. https://doi.org/10.3390/s22082988