Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. MIP Sensor Fabrication
2.4. Electrochemical Measurements
2.5. Samples Analysis
3. Results and Discussion
3.1. Molecularly Imprinting of TZD by Electropolymerization
3.2. Electrochemical Behavior of TZD at MIP/SPCE
3.3. Optimization of Experimental Conditions
3.3.1. Polymerization Conditions
3.3.2. Incubation Time
3.3.3. Extraction Conditions
3.4. Characterization of the Construction of the Sensor
3.5. Analytical Performance
3.6. Selectivity Studies
3.7. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naves, M.P.C.; De Morais, C.R.; Spanó, M.A.; De Rezende, A.A.A. Mutagenicity and recombinogenicity evaluation of bupropion hydrochloride and trazodone hydrochloride in somatic cells of Drosophila melanogaster. Food Chem. Toxicol. 2019, 131, 110557. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.H.; Ramalhosa, M.J.; Ferreira, M.; Delerue-Matos, C. Development of a modified acetonitrile-based extraction procedure followed by ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of psychiatric drugs in sediments. J. Chromatogr. A 2016, 1437, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Smits, F.; Huijts, T. Treatment for depression in 63 countries worldwide: Describing and explaining cross-national differences. Health Place 2015, 31, 1–9. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 18 February 2022).
- Fernandes, B.M.; Siqueira, C.C.; Vieira, R.M.; Moreno, R.A.; Soeiro-De-Souza, M.G. Physical activity as an adjuvant therapy for depression and influence on peripheral inflammatory markers: A randomized clinical trial. Ment. Health Phys. Act. 2022, 22, 100442. [Google Scholar] [CrossRef]
- Melchor-Martínez, E.M.; Jiménez-Rodríguez, M.G.; Martínez-Ruiz, M.; Peña-Benavides, S.A.; Iqbal, H.M.; Parra-Saldívar, R.; Hernández, J.E.S. Antidepressants surveillance in wastewater: Overview extraction and detection. Case Stud. Chem. Environ. Eng. 2020, 3, 100074. [Google Scholar] [CrossRef]
- Osawa, R.A.; Monteiro, O.C.; Oliveira, M.C.; Florêncio, M.H. Comparative study on photocatalytic degradation of the antidepressant trazodone using (Co, Fe and Ru) doped titanate nanowires: Kinetics, transformation products and in silico toxicity assessment. Chemosphere 2020, 259, 127486. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Santos, L.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J. Pharm. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Salama, F.M.; Attia, K.A.; Said, R.A.; El-Olemy, A.; Abdel-Raoof, A.M. Disposable gold nanoparticle functionalized and bare screen-printed electrodes for potentiometric determination of trazodone hydrochloride in pure form and pharmaceutical preparations. RSC Adv. 2018, 8, 11517–11527. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.T.; Mota, D.; Ribeiro, L.; Rodrigues, J.D. Trazodone-induced delirium: Case report. Rev. Colomb. Psiquiatr. (Engl. Ed.) 2020, 49, 199–201. [Google Scholar] [CrossRef]
- Hegde, R.N.; Shetti, N.; Nandibewoor, S.T. Electro-oxidation and determination of trazodone at multi-walled carbon nanotube-modified glassy carbon electrode. Talanta 2009, 79, 361–368. [Google Scholar] [CrossRef]
- Saint-Gerons, D.M.; Álvarez, C.H.; Poza, P.G.; Corominas, D.M.; Honrubia, C.D.L.F. Trazodone utilization among the elderly in Spain. A population based study. Rev. Psiquiatr. Salud Ment. 2018, 11, 208–215. [Google Scholar] [CrossRef] [PubMed]
- García, M.S.; Ortuño, J.; Albero, M.I.; Cuartero, M. Application of a trazodone-selective electrode to pharmaceutical quality control and urine analyses. Anal. Bioanal. Chem. 2009, 394, 1563–1567. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, S.; Yin, H.; Wang, C.; Lee, S.M.; Wang, R. Alleviating the hepatotoxicity of trazodone via supramolecular encapsulation. Food Chem. Toxicol. 2018, 112, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Dehpour, A.R. Extremely Prolonged INR Associated with Warfarin in Combination with Both Trazodone and Omega-3 Fatty Acids. Arch. Med. Res. 2007, 38, 901–904. [Google Scholar] [CrossRef]
- Kaneda, Y.; Ohmori, T.; Okabe, H. Possible mild serotonin syndrome related to co-prescription of tandospirone and trazodone. Gen. Hosp. Psychiatry 2001, 23, 98–101. [Google Scholar] [CrossRef]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; de Carvalho, M.M.M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2018, 648, 582–600. [Google Scholar] [CrossRef]
- Khalil, S.; El-Ries, M. AAS and AES determination of furaltadone, methadone and trazodone in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2001, 27, 117–122. [Google Scholar] [CrossRef]
- Vire, J.C.; Squella, A.; Kauffmann, J.M.; Nunez-Vergara, L.J.; Patriarche, G.J. Polarographic Behaviour of Trazodone. Anal. Lett. 1987, 20, 1467. [Google Scholar] [CrossRef]
- Li-Bo, D.; Rong-Hua, Z.; Huan-De, L.; Feng, W.; Ping-Fei, F.; Jiang, L. Quantitative analysis of trazodone in human plasma by using HPLC-fluorescence detector coupled with strong cation exchange chromatographic column: Application to a pharmacokinetic study in Chinese healthy volunteers. J. Chromatogr. B 2014, 944, 43–48. [Google Scholar] [CrossRef]
- Gammans, R.; Kerns, E.; Bullen, W.; Covington, R.; Russell, J. Gas chromatographic—Mass spectrometric method for trazodone and a deuterated analogue in plasma. J. Chromatogr. B Biomed. Sci. Appl. 1985, 339, 303–312. [Google Scholar] [CrossRef]
- El-Gindy, A.; El-Zeany, B.; Awad, T.; Shabana, M.M. Spectrophotometric, spectrofluorimetric and LC determination of trazodone hydrochloride. J. Pharm. Biomed. Anal. 2001, 26, 211–217. [Google Scholar] [CrossRef]
- Alrabiah, H.; I Aljohar, H.; Bakheit, A.H.; Homoda, A.M.; Mostafa, G.A.-H. Comparative study of β-cyclodextrin, γ-cyclodextrin and 4-tert-butylcalix[8]arene ionophores as electroactive materials for the construction of new sensors for trazodone based on host-guest recognition. Drug Des. Dev. Ther. 2019, 13, 2283–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebelo, P.; Pacheco, J.G.; Voroshylova, I.V.; Melo, A.; Cordeiro, M.N.D.; Delerue-Matos, C. A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulation. Anal. Chim. Acta 2021, 1194, 339410. [Google Scholar] [CrossRef] [PubMed]
- Seguro, I.; Pacheco, J.; Delerue-Matos, C. Low Cost, Easy to Prepare and Disposable Electrochemical Molecularly Imprinted Sensor for Diclofenac Detection. Sensors 2021, 21, 1975. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, P.; Pacheco, J.G.; Voroshylova, I.V.; Melo, A.; Cordeiro, M.N.D.; Delerue-Matos, C. Rational development of molecular imprinted carbon paste electrode for Furazolidone detection: Theoretical and experimental approach. Sens. Actuators B Chem. 2020, 329, 129112. [Google Scholar] [CrossRef]
- Zeb, S.; Wong, A.; Khan, S.; Hussain, S.; Sotomayor, M.D. Using magnetic nanoparticles/MIP-based electrochemical sensor for quantification of tetracycline in milk samples. J. Electroanal. Chem. 2021, 900, 115713. [Google Scholar] [CrossRef]
- Kaya, S.; Cetinkaya, A.; Ozcelikay, G.; Çorman, M.E.; Karakaya, M.; Atici, E.B.; Ozkan, S.A. Computational design and fabrication of a highly selective and sensitive molecularly imprinted electrochemical sensor for the detection of enzalutamide. J. Electroanal. Chem. 2022, 907, 116030. [Google Scholar] [CrossRef]
- Garcia, S.M.; Wong, A.; Khan, S.; Sotomayor, M.D. A simple, sensitive and efficient electrochemical platform based on carbon paste electrode modified with Fe3O4@MIP and graphene oxide for folic acid determination in different matrices. Talanta 2021, 229, 122258. [Google Scholar] [CrossRef]
- Pacheco, J.P.G.; Silva, M.S.V.; Freitas, M.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). Sens. Actuators B Chem. 2018, 256, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Lopes, F.; Pacheco, J.; Rebelo, P.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection. Sens. Actuators B Chem. 2017, 243, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, P.; Pacheco, J.G.; Voroshylova, I.V.; Cordeiro, M.N.D.; Delerue-Matos, C. Development of a molecular imprinted electrochemiluminescence sensor for amitriptyline detection: From MD simulations to experimental implementation. Electrochim. Acta 2021, 397, 139273. [Google Scholar] [CrossRef]
- Dogrukol-Ak, D.; Zaimoglu, V.; Tunçel, M. Voltammetry of trazodone by platinum electrode and its determination in tablets using DP technique in the rotating conditions. Eur. J. Pharm. Sci. 1998, 7, 215–220. [Google Scholar] [CrossRef]
Analytical Method | Samples | LOD | References |
---|---|---|---|
Potentiometry | Urine Pharmaceutical preparations | 1.8 × 10−5 M | [13] |
Voltammetry | Pharmaceutical preparations | 1.7 × 10−6 M | [34] |
Voltammetry | Human serum water | 1.6 × 10−6 M | This work |
Sample | [TZD]add, µM | [TZD]det, µM | Recovery, % |
---|---|---|---|
Tap water | 0 | ||
5 | 4.68 | 94 | |
10 | 10.1 | 101 | |
Human serum | 0 | ||
10 | 7.06 | 71 | |
100 | 77.8 | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seguro, I.; Rebelo, P.; Pacheco, J.G.; Delerue-Matos, C. Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors 2022, 22, 2819. https://doi.org/10.3390/s22072819
Seguro I, Rebelo P, Pacheco JG, Delerue-Matos C. Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors. 2022; 22(7):2819. https://doi.org/10.3390/s22072819
Chicago/Turabian StyleSeguro, Isabel, Patrícia Rebelo, João G. Pacheco, and Cristina Delerue-Matos. 2022. "Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone" Sensors 22, no. 7: 2819. https://doi.org/10.3390/s22072819
APA StyleSeguro, I., Rebelo, P., Pacheco, J. G., & Delerue-Matos, C. (2022). Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors, 22(7), 2819. https://doi.org/10.3390/s22072819