Knowledge Graph Based Hard Drive Failure Prediction
Abstract
:1. Introduction
2. State of the Art
2.1. Semantic Model-Based Study
2.2. Machine Learning-Based Study
2.3. Summary
3. Methodology
- The first application requirement is for data in the KGs. If only tabular data is available, it must be transformed into the KGs. Section 4.2, data preprocessing, goes into greater detail about the data transformation process into KGs and Section 4.1 discusses the used data. Additionally, we refer to the studies [57,58] for additional information on converting tabular data to KGs;
- After obtaining the KGs data, the next step is to divide it into training and testing sets. This step of splitting the data into training and testing set is also common for the H2O AutoML. The task of splitting the data into a training and testing set is performed during the data preprocessing phase;
- The next step is to train the ML model, which in our case is RGCN, using the split training KG. The details about the training are available in Section 4.4 and Section 5.2;
- After training is complete, the model is evaluated using split-testing KGs. Section 5.2 and Section 5.4 contain details about the evaluation and its findings, which are performed and obtained aplying evaluation metrics (see Section 5.3).
4. Experiment
4.1. Dataset
4.2. Data Preprocessing
4.3. H2O AutoML
4.4. Relational Graph Convolution Network (RGCN)
5. Performance Evaluation
5.1. System Setup
5.2. Training and Testing
5.3. Evaluation Metrics
5.4. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, S.F.; Rudas, I.J.; Zurada, J.M.; Er, M.J.; Chou, J.H.; Kwon, D. Industry 4.0: A special section in IEEE access. IEEE Access 2017, 5, 12257–12261. [Google Scholar] [CrossRef] [Green Version]
- Bonnaud, S.; Didier, C.; Kohler, A. Industry 4.0 and Cognitive Manufacturing: Architecture Patterns, Use Cases and IBM Solutions. 2019. Available online: https://www.ibm.com/downloads/cas/M8J5BA6R (accessed on 27 October 2021).
- Selcuk, S. Predictive maintenance, its implementation and latest trends. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 1670–1679. [Google Scholar] [CrossRef]
- Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N. Verification and validation techniques for streaming big data analytics in internet of things environment. IET Netw. 2019, 8, 155–163. [Google Scholar] [CrossRef]
- Li, J.; Stones, R.J.; Wang, G.; Liu, X.; Li, Z.; Xu, M. Hard drive failure prediction using Decision Trees. Reliab. Eng. Syst. Saf. 2017, 164, 55–65. [Google Scholar] [CrossRef]
- Liu, D.; Wang, B.; Li, P.; Stones, R.J.; Marbach, T.G.; Wang, G.; Liu, X.; Li, Z. Predicting Hard Drive Failures for Cloud Storage Systems. In Algorithms and Architectures for Parallel Processing; Wen, S., Zomaya, A., Yang, L.T., Eds.; Springer International Publishing: Cham, Swizerland, 2020; pp. 373–388. [Google Scholar]
- Li, J.; Ji, X.; Jia, Y.; Zhu, B.; Wang, G.; Li, Z.; Liu, X. Hard Drive Failure Prediction Using Classification and Regression Trees. In Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Atlanta, GA, USA, 23–26 June 2014; pp. 383–394. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 1996, 28, 71–72. [Google Scholar] [CrossRef]
- Sutton, O. Introduction to k Nearest Neighbour Classification and Condensed Nearest Neighbour Data Reduction; University Lectures; University of Leicester: Leicester, UK, 2012; Volume 1. [Google Scholar]
- Piccarreta, R. Classification trees for ordinal variables. Comput. Stat. 2008, 23, 407–427. [Google Scholar] [CrossRef]
- Speybroeck, N. Classification and regression trees. Int. J. Public Health 2012, 57, 243–246. [Google Scholar] [CrossRef]
- Dalzochio, J.; Kunst, R.; Pignaton, E.; Binotto, A.P.D.; Sanyal, S.; Favilla, J.R.; Barbosa, J.L.V. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 2020, 123, 103298. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Soares, F.; Vita, R.; da Piedade Francisco, R.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar] [CrossRef]
- Zonta, T.; da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Yang, W.; Hu, D.; Liu, Y.; Wang, S.; Jiang, T. Hard Drive Failure Prediction Using Big Data. In Proceedings of the 2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW), Montreal, QC, Canada, 28 September–1 October 2015; pp. 13–18. [Google Scholar]
- Xu, C.; Wang, G.; Liu, X.; Guo, D.; Liu, T.Y. Health Status Assessment and Failure Prediction for Hard Drives with Recurrent Neural Networks. IEEE Trans. Comput. 2016, 65, 3502–3508. [Google Scholar] [CrossRef]
- Ali, M.; Patel, P.; Breslin, J. Middleware for Real-Time Event Detection andPredictive Analytics in Smart Manufacturing. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 370–376. [Google Scholar]
- Krupitzer, C.; Wagenhals, T.; Züfle, M.; Lesch, V.; Schäfer, D.; Mozaffarin, A.; Edinger, J.; Becker, C.; Kounev, S. A survey on predictive maintenance for industry 4.0. arXiv 2020, arXiv:2002.08224. [Google Scholar]
- Johansson, A. Machine Learning Is Bad at Context. Here’s How We Fix It. Available online: https://www.computer.org/publications/tech-news/trends/Machine-Learning-Is-Bad-at-Context-Heres-How-We-Fix-It (accessed on 27 September 2021).
- Zhdanova, A.V.; Zoric, J.; Marengo, M.; van Kranenburg, H.; Snoeck, N.; Sutterer, M.; Räck, C.; Droegehorn, O.; Arbanowski, S. Context acquisition, representation and employment in mobile service platforms. In Proceedings of the 15th IST Mobile & Wireless Communications Summit, Myconos, Greece, 4–8 June 2006; Volume 53. [Google Scholar]
- Hogan, A.; Blomqvist, E.; Cochez, M.; D’amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge Graphs. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Manousakis, I.; Sankar, S.; McKnight, G.; Nguyen, T.D.; Bianchini, R. Environmental Conditions and Disk Reliability in Free-cooled Datacenters. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST 16), Santa Clara, CA, USA, 22–25 February 2016; pp. 53–65. [Google Scholar]
- Chhetri, T.R. Improving Decision Making Using Semantic Web Technologies. In The Semantic Web: ESWC 2021 Satellite Events; Verborgh, R., Dimou, A., Hogan, A., d’Amato, C., Tiddi, I., Bröring, A., Mayer, S., Ongenae, F., Tommasini, R., Alam, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 165–175. [Google Scholar]
- Mamoutova, O.; Uspenskiy, M.; Smirnov, S.; Bolsunovskaya, M. Ontological Approach to Automated Analysis of Enterprise Data Storage Systems Log Files. Acta Polytech. Hung. 2021, 18, 27–47. [Google Scholar] [CrossRef]
- Fensel, D.; Simsek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. Knowledge Graphs; Springer: Berlin, Germany, 2020. [Google Scholar]
- Jung, H.; Yoo, H.; Chung, K. Associative context mining for ontology-driven hidden knowledge discovery. Clust. Comput. 2016, 19, 2261–2271. [Google Scholar] [CrossRef]
- Freire, N.; de Valk, S. Automated interpretability of linked data ontologies: An evaluation within the cultural heritage domain. In Proceedings of the IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3072–3079. [Google Scholar] [CrossRef]
- El-Sappagh, S.; Alonso, J.M.; Ali, F.; Ali, A.; Jang, J.; Kwak, K. An Ontology-Based Interpretable Fuzzy Decision Support System for Diabetes Diagnosis. IEEE Access 2018, 6, 37371–37394. [Google Scholar] [CrossRef]
- Lakehal, A.; Alti, A.; Roose, P. A semantic event based framework for complex situations modeling and identification in smart environments. Int. J. Adv. Comput. Res. 2019, 9, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Lam, A.N.; Haugen, Ø. Applying semantics into service-oriented iot framework. In Proceedings of the IEEE 17th International Conference on Industrial Informatics (INDIN), Espoo, Finland, 23–25 July 2019; Volume 1, pp. 206–213. [Google Scholar]
- Cao, Q.; Samet, A.; Zanni-Merk, C.; De Bertrand de Beuvron, F.; Reich, C. Combining chronicle mining and semantics for predictive maintenance in manufacturing processes. Semant. Web 2020, 11, 927–948. [Google Scholar] [CrossRef]
- Cao, Q.; Samet, A.; Zanni-Merk, C.; de Bertrand de Beuvron, F.; Reich, C. An Ontology-based Approach for Failure Classification in Predictive Maintenance Using Fuzzy C-means and SWRL Rules. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019. Procedia Comput. Sci. 2019, 159, 630–639. [Google Scholar] [CrossRef]
- Mezni, H.; Benslimane, D.; Bellatreche, L. Context-aware Service Recommendation based on Knowledge Graph Embedding. IEEE Trans. Knowl. Data Eng. 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Gruber, T. Ontology. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009; pp. 1963–1965. [Google Scholar] [CrossRef]
- Kainzner, M.; Klösch, C.; Filipiak, D.; Chhetri, T.; Fensel, A.; Martinez-Gil, J. Poster: Towards reusable ontology alignment for manufacturing maintenance. In CEUR Workshop Proceedings Series (Vol-2941); SEMANTiCS 2021 EU: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Rajashekarappa, S.S.K.M. Self Monitoring Analysis and Reporting Technology (SMART) Copyback. In Computer Networks and Intelligent Computing; Venugopal, K.R., Patnaik, L.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 463–469. [Google Scholar]
- Schoenfisch, J.; Meilicke, C.; von Stülpnagel, J.; Ortmann, J.; Stuckenschmidt, H. Root cause analysis in IT infrastructures using ontologies and abduction in Markov Logic Networks. Inf. Syst. 2018, 74, 103–116. [Google Scholar] [CrossRef]
- Richardson, M.; Domingos, P. Markov logic networks. Mach. Learn. 2006, 62, 107–136. [Google Scholar] [CrossRef] [Green Version]
- Mamoutova, O.V.; Uspenskiy, M.B.; Sochnev, A.V.; Smirnov, S.V.; Bolsunovskaya, M.V. Knowledge Based Diagnostic Approach for Enterprise Storage Systems. In Proceedings of the 2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 12–14 September 2019; pp. 207–212. [Google Scholar] [CrossRef]
- Su, C.J.; Huang, S.F. Real-time big data analytics for hard disk drive predictive maintenance. Comput. Electr. Eng. 2018, 71, 93–101. [Google Scholar] [CrossRef]
- Shen, J.; Wan, J.; Lim, S.J.; Yu, L. Random-forest-based failure prediction for hard disk drives. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718806480. [Google Scholar] [CrossRef]
- Züfle, M.; Krupitzer, C.; Erhard, F.; Grohmann, J.; Kounev, S. To Fail or Not to Fail: Predicting Hard Disk Drive Failure Time Windows. In Measurement, Modelling and Evaluation of Computing Systems; Hermanns, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 19–36. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Cao, H.; Li, X.L.; Woon, D.Y.K.; Ng, S.K. Integrated Oversampling for Imbalanced Time Series Classification. IEEE Trans. Knowl. Data Eng. 2013, 25, 2809–2822. [Google Scholar] [CrossRef]
- Mashhadi, A.R.; Cade, W.; Behdad, S. Moving towards Real-time Data-driven Quality Monitoring: A Case Study of Hard Disk Drives. Procedia Manuf. 2018, 26, 1107–1115. [Google Scholar] [CrossRef]
- Dabiri, S.; Abbas, M. Evaluation of the gradient boosting of regression trees method on estimating car-following behavior. Transp. Res. Rec. 2018, 2672, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Lee, P.P.C.; Shen, Z.; He, C.; Liu, Y.; Huang, T. Toward Adaptive Disk Failure Prediction via Stream Mining. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 628–638. [Google Scholar] [CrossRef]
- Ganguly, S.; Consul, A.; Khan, A.; Bussone, B.; Richards, J.; Miguel, A. A Practical Approach to Hard Disk Failure Prediction in Cloud Platforms: Big Data Model for Failure Management in Datacenters. In Proceedings of the 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, UK, 23–26 August 2016; pp. 105–116. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; He, L.; Li, Z.; Yu, P.S. Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 1428–1433. [Google Scholar] [CrossRef] [Green Version]
- De santo, A.; Galli, A.; Gravina, M.; Moscato, V.; Sperli, G. Deep Learning for HDD health assessment: An application based on LSTM. IEEE Trans. Comput. 2020, 71, 69–80. [Google Scholar] [CrossRef]
- Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236. [Google Scholar]
- Franklin, P.H. Predicting disk drive failure using condition based monitoring. In Proceedings of the 2017 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA, 23–26 January 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Gao, C.; Sun, C.; Shan, L.; Lin, L.; Wang, M. Rotate3D: Representing Relations as Rotations in Three-Dimensional Space for Knowledge Graph Embedding. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Online, 19–23 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 385–394. [Google Scholar]
- Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-BERT: Enabling Language Representation with Knowledge Graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 2901–2908. [Google Scholar] [CrossRef]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional Networks. In The Semantic Web; Gangemi, A., Navigli, R., Vidal, M.E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 593–607. [Google Scholar]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the International Conference on Machine Learning PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871. [Google Scholar]
- Abdelmageed, N. Towards Transforming Tabular Datasets into Knowledge Graphs. In Proceedings of the European Semantic Web Conference, Online, 2 June 2020; Springer: Berlin, Germany, 2020; pp. 217–228. [Google Scholar]
- Iglesias, E.; Jozashoori, S.; Chaves-Fraga, D.; Collarana, D.; Vidal, M.E. SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Online, 19–23 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 3039–3046. [Google Scholar]
- LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML, Vienna, Austria, 17–18 July 2020; Volume 2020. [Google Scholar]
- Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo method is so important today. WIREs Comput. Stat. 2014, 6, 386–392. [Google Scholar] [CrossRef]
- Berrar, D. Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 542–545. [Google Scholar]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1263–1272. [Google Scholar]
- Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks. arXiv 2019, arXiv:1909.01315. [Google Scholar]
- CSIRO’s Data61. StellarGraph Machine Learning Library. 2018. Available online: https://github.com/stellargraph/stellargraph (accessed on 15 August 2021).
- Ravichandiran, S. Hands-On Deep Learning Algorithms with Python; Packt Publishing: Birmingham, UK, 2019. [Google Scholar]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice and research for deep learning. In Proceedings of the 2nd International Conference on Computational Sciences and Technology (INCCST), Mohali, India, 17–18 December; 2021; pp. 124–133. [Google Scholar]
- Gal, Y.; Ghahramani, Z. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. In Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29. [Google Scholar]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data. In Proceedings of the SAS Global Forum, Orlando, FL, USA, 2–5 April 2017; pp. 2–5. [Google Scholar]
- Juba, B.; Le, H.S. Precision-recall versus accuracy and the role of large data sets. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4039–4048. [Google Scholar]
- Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
Study | Method | Performance | Training Time | Were SMART | Limitations | |
---|---|---|---|---|---|---|
ML | Semantics | Attributes Used? | ||||
Mamoutova et al. [24] | ✔ | ✔ | Precision of 74%. | 183 s to ~7 h, depending on the algorithm. | ✖ | The use of a semantic-only approach is restricted to predefined rules, such as the requirement that each fault be defined by a combination of values and monitoring parameters. |
Su et al. [40] | ✔ | ✖ | Accuracy of 85.84%. | - | ✔ | |
Shen et al. [41] | ✔ | ✖ | Failure detection rates of over 97.67%. False alarm rate of 0.017%. | - | ✔ | |
Mashhadi et al. [45] | ✔ | ✖ | with less than 50%. | - | ✔ | |
Han et al. [47] | ✔ | ✖ | Precision, recall, and F1-score are increased by 27.5–71.8%, 15.7–37.4%, and 26.8–53.2% respectively. | Training time is 10.6 s (0.6 s deviation). | ✔ | |
Züfle et al. [42] | ✔ | ✖ | Accuracy, precision, and recall are 97.642%, 94.913%, and 96.97%, respectively. | The average training time of the multi-class classification approach is 174 s, while for the pre-filtering is 346 s. | ✔ | As previously stated, studies that rely solely on machine learning lack context awareness. Furthermore, the studies lack benefits such as the ability to incorporate expert knowledge and additional information, such as humidity, which is another reason for the failure associated with the use of KG, aside from the improved results. |
Ganguly et al. [48] | ✔ | ✖ | Key performance indicators were established and used at different steps, such as design changes in production and pilot in test environment. | - | ✔ | |
Liu et al. [6] | ✔ | ✖ | 100.0% failure detection rate at a 0.02% false alarm rate. | - | ✔ | |
Zang et al. [49] | ✔ | ✖ | Accuracy, precision, and recall are 92.6%, 89%, and 88.7%, respectively. | - | ✔ | |
Santo et al. [50] | ✔ | ✖ | Accuracy of 98.45%, precision of 98.33% and recall of 98.34%. | - | ✔ |
SN | SMART Attribute | Definition |
---|---|---|
1 | Smart 5 | Reallocated sector count. |
2 | Smart 10 | Spin retry count. |
3 | Smart 187 | Reported uncorrectable errors. |
4 | Smart 189 | High fly writes. |
5 | Smart 190 | Temperature difference or airflow difference. |
6 | Smart 198 | Uncorrectable sector count. |
7 | Smart 197 | Current pending sector count. |
8 | Smart 199 | UltraDMA CRC error count. |
9 | Smart 188 | Connection timeout. |
Iterations | Regularisation | Predicators | Metalearner | Link | Lambda |
---|---|---|---|---|---|
99 | Elastic Net (alpha = 0.5, lambda = ) | 3 | GLM | logit | nlambda = 100, lambda.max = , lambda.min = , lambda.1se = |
Iterations | Regularisation | Predicators | Link | Lambda |
---|---|---|---|---|
45 | Ridge (lambda = ) | 465 | logit | nlambda = 30, lambda.max = , lambda.min = , lambda.1se = |
Number of Trees | Min. Depth | Max. Depth | Min. Leaves | Max. Leaves |
---|---|---|---|---|
48 | 0 | 20 | 1 | 82 |
Booster | Number of Trees | Learning Rate | Sample Rate | Max. Depth | Min. Rows | Tree Method |
---|---|---|---|---|---|---|
gbtree | 99 | 10 | 5 | hist |
Accuracy (%) | Precision (%) | Recall (%) | Training Time | |
---|---|---|---|---|
Su et al.(2018) [40] | − | − | − | |
Zang et al. (2018) [49] | 89 | − | ||
Santo et al. (2020) [50] | − | |||
Han et al. (2020) [47] | − | 10.6 s (streaming) | ||
Züfle et al. (2020) [42] | 174 s, on average | |||
Mamoutova et al. (2021) [24] | − | 74 | − | 183 s–7 h |
Our baseline (H2O AutoML) | 99 | 99 | 99 | ~2.5 h |
Our proposed KG-based approach | 100 | 100 | 100 | ~2 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhetri, T.R.; Kurteva, A.; Adigun, J.G.; Fensel, A. Knowledge Graph Based Hard Drive Failure Prediction. Sensors 2022, 22, 985. https://doi.org/10.3390/s22030985
Chhetri TR, Kurteva A, Adigun JG, Fensel A. Knowledge Graph Based Hard Drive Failure Prediction. Sensors. 2022; 22(3):985. https://doi.org/10.3390/s22030985
Chicago/Turabian StyleChhetri, Tek Raj, Anelia Kurteva, Jubril Gbolahan Adigun, and Anna Fensel. 2022. "Knowledge Graph Based Hard Drive Failure Prediction" Sensors 22, no. 3: 985. https://doi.org/10.3390/s22030985
APA StyleChhetri, T. R., Kurteva, A., Adigun, J. G., & Fensel, A. (2022). Knowledge Graph Based Hard Drive Failure Prediction. Sensors, 22(3), 985. https://doi.org/10.3390/s22030985