Adaptive Grasping of Moving Objects through Tactile Sensing
Abstract
:1. Introduction
2. Prior Work
3. Materials and Methods
3.1. Motion of the Ball
3.2. Implementation of 2-Finger Gripper
3.3. Grasping Strategies
Algorithm 1: Pseudocode describing the implementation of the predictive strategy. |
- The grasp was triggered when the object first made contact with any of the tactile sensors in the gripper;
- Upon detection of contact with an object, the gripper moved laterally in an attempt to centre the object in the gripper.;
- To minimise forces exerted on the ball at contact with the gripper, the closing motion of the finger that first comes into contact with the ball was delayed by 3 ms relative to the other finger. This duration was empirically determined through a process of trial and error.
Algorithm 2: Pseudocode describing the implementation of the reactive grasping strategy. |
3.4. Experimental Procedure
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bäuml, B.; Birbach, O.; Wimböck, T.; Frese, U.; Dietrich, A.; Hirzinger, G. Catching flying balls with a mobile humanoid: System overview and design considerations. In Proceedings of the 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26–28 October 2011; pp. 513–520. [Google Scholar] [CrossRef]
- Kim, S.; Shukla, A.; Billard, A. Catching objects in flight. IEEE Trans. Robot. 2014, 30, 1049–1065. [Google Scholar] [CrossRef]
- Bäuml, B.; Wimböck, T.; Hirzinger, G. Kinematically optimal catching a flying ball with a hand-arm-system. In Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference Proceedings, Taipei, Taiwan, 18 October 2010; pp. 2592–2599. [Google Scholar] [CrossRef]
- Wei, H.; Wang, L. A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing. Sensors 2018, 18, 2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billard, A.; Kragic, D. Trends and challenges in robot manipulation. Science 2019, 364, 1149. [Google Scholar] [CrossRef]
- Kober, J.; Glisson, M.; Mistry, M. Playing catch and juggling with a humanoid robot. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan, 29 November 2012; pp. 875–881. [Google Scholar] [CrossRef]
- Tomo, T.P.; Schmitz, A.; Wong, W.K.; Kristanto, H.; Somlor, S.; Hwang, J.; Jamone, L.; Sugano, S. Covering a Robot Fingertip With uSkin: A Soft Electronic Skin With Distributed 3-Axis Force Sensitive Elements for Robot Hands. IEEE Robot. Autom. Lett. 2018, 3, 124–131. [Google Scholar] [CrossRef]
- Xu, D.; Loeb, G.E.; Fishel, J.A. Tactile identification of objects using Bayesian exploration. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3056–3061. [Google Scholar] [CrossRef]
- Bauza, M.; Canal, O.; Rodriguez, A. Tactile Mapping and Localization from High-Resolution Tactile Imprints. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3811–3817. [Google Scholar]
- Dallaire, P.; Giguère, P.; Émond, D.; Chaib-draa, B. Autonomous tactile perception: A combined improved sensing and Bayesian nonparametric approach. Robot. Auton. Syst. 2014, 62, 422–435. [Google Scholar] [CrossRef]
- Gao, Y.; Hendricks, L.A.; Kuchenbecker, K.J.; Darrell, T. Deep learning for tactile understanding from visual and haptic data. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 536–543. [Google Scholar] [CrossRef] [Green Version]
- Blanes, C.; Cortés, V.; Ortiz, C.; Mellado, M.; Talens, P. Non-Destructive Assessment of Mango Firmness and Ripeness Using a Robotic Gripper. Food Bioprocess Technol. 2015, 8, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Khamis, H.; Xia, B.; Redmond, S.J. Real-time Friction Estimation for Grip Force Control. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 1608–1614. [Google Scholar] [CrossRef]
- Sutanto, G.; Ratliff, N.; Sundaralingam, B.; Chebotar, Y.; Su, Z.; Handa, A.; Fox, D. Learning Latent Space Dynamics for Tactile Servoing. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3622–3628. [Google Scholar]
- Lepora, N.F.; Aquilina, K.; Cramphorn, L. Exploratory Tactile Servoing With Active Touch. IEEE Robot. Autom. Lett. 2017, 2, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Hermans, T.; Fox, D.; Birchfield, S.; Tremblay, J. Contextual Reinforcement Learning of Visuo-tactile Multi-fingered Grasping Policies. arXiv 2019, arXiv:1911.09233. [Google Scholar]
- Lepora, N.F.; Church, A.; de Kerckhove, C.; Hadsell, R.; Lloyd, J. From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor. IEEE Robot. Autom. Lett. 2019, 4, 2101–2107. [Google Scholar] [CrossRef] [Green Version]
- Hauser, K. Bayesian Tactile Exploration for Compliant Docking With Uncertain Shapes. IEEE Trans. Robot. 2019, 35, 1084–1096. [Google Scholar] [CrossRef]
- Funabashi, S.; Gang, Y.; Geier, A.; Schmitz, A.; Sugano, S. Morphology-Specific Convolutional Neural Networks for Tactile Object Recognition with a Multi-Fingered Hand. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 57–63. [Google Scholar]
- Cockbum, D.; Roberge, J.P.; Le, T.H.L.; Maslyczyk, A.; Duchaine, V. Grasp stability assessment through unsupervised feature learning of tactile images. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2238–2244. [Google Scholar] [CrossRef] [Green Version]
- Bekiroglu, Y.; Damianou, A.; Detry, R.; Stork, J.A.; Kragic, D.; Ek, C.H. Probabilistic consolidation of grasp experience. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 193–200. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.; Jara, C.A.; Torres, F. In-hand recognition and manipulation of elastic objects using a servo-tactile control strategy. Robot. Comput.-Integr. Manuf. 2017, 48, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Bühler, M.; Koditschek, D.E.; Kindlmann, P.J. Planning and Control of Robotic Juggling Tasks. In The Fifth International Symposium on Robotics Research; MIT Press: Cambridge, MA, USA, 1990; pp. 321–332. [Google Scholar]
- Luo, R.C.; Liao, C. Robotic conveyor tracking with dynamic object fetching for industrial automation. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 369–374. [Google Scholar] [CrossRef]
- Salehian, S.S.M.; Khoramshahi, M.; Billard, A. A Dynamical System Approach for Softly Catching a Flying Object: Theory and Experiment. IEEE Trans. Robot. 2016, 32, 462–471. [Google Scholar] [CrossRef]
- Carneiro, D.; Silva, F.; Georgieva, P. The role of early anticipations for human–robot ball catching. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 10–16. [Google Scholar] [CrossRef]
- Kober, J.; Mülling, K.; Krömer, O.; Lampert, C.H.; Schölkopf, B.; Peters, J. Movement templates for learning of hitting and batting. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010; pp. 853–858. [Google Scholar] [CrossRef]
- Senoo, T.; Namiki, A.; Ishikawa, M. Ball control in high-speed batting motion using hybrid trajectory generator. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 1762–1767. [Google Scholar] [CrossRef] [Green Version]
- Riley, M.; Atkeson, C.G. Robot catching: Towards engaging human-humanoid interaction. Auton. Robot. 2002, 12, 119–128. [Google Scholar] [CrossRef]
- Escaida Navarro, S.; Weiss, D.; Stogl, D.; Milev, D.; Hein, B. Tracking and Grasping of Known and Unknown Objects from a Conveyor Belt. In Proceedings of the ISR/Robotik 2014; 41st International Symposium on Robotics, Munchen, Germanny, 2–3 June 2014; pp. 1–8. [Google Scholar]
- Smith, C.; Christensen, H.I. Using COTS to Construct a High Performance Robot Arm. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10 April 2007; pp. 4056–4063. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Velasquez, H.; Li, N.; Tylecek, R.; Saval-Calvo, M.; Fisher, R.B. Hybrid Multi-camera Visual Servoing to Moving Target. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1132–1137. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Namiki, A.; Hashimoto, K.; Ishikawa, M. Dynamic active catching using a high-speed multifingered hand and a high-speed vision system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; Volume 2, pp. 1849–1854. [Google Scholar] [CrossRef]
- Koyama, K.; Murakami, K.; Senoo, T.; Shimojo, M.; Ishikawa, M. High-Speed, Small-Deformation Catching of Soft Objects Based on Active Vision and Proximity Sensing. IEEE Robot. Autom. Lett. 2019, 4, 578–585. [Google Scholar] [CrossRef]
- Lynch, P.; McGinn, C. Using Tactile Sensing to Improve Performance when Grasping Moving Objects. In Proceedings of the 2021 SMC Conference, IEEE Systems, Man and Cybernetics, Melbourne, Australia, 17–20 October 2021. [Google Scholar]
- Joergensen, J.A.; Ellekilde, L.P.; Petersen, H.G. RobWorkSim—An Open Simulator for Sensor based Grasping. In Proceedings of the ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), Munich, Germany, 7–9 June 2010; pp. 1–8. [Google Scholar]
- Agboh, W.C.; Dogar, M.R. Real-Time Online Re-Planning for Grasping Under Clutter and Uncertainty. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, J.; To, T.; Sundaralingam, B.; Xiang, Y.; Fox, D.; Birchfield, S. Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects. arXiv 2018, arXiv:1809.10790. [Google Scholar]
- Ledermann, C.; Wirges, S.; Oertel, D.; Mende, M.; Woern, H. Tactile sensor on a magnetic basis using novel 3D Hall sensor - First prototypes and results. In Proceedings of the INES 2013—IEEE 17th International Conference on Intelligent Engineering Systems, San Jose, Costa Rica, 19–21 June 2013; pp. 55–60. [Google Scholar] [CrossRef]
- Jamone, L.; Metta, G.; Nori, F.; Sandini, G. James: A humanoid robot acting over an unstructured world. In Proceedings of the Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Genova, Italy, 4–6 December 2006; pp. 143–150. [Google Scholar] [CrossRef] [Green Version]
- Jamone, L.; Natale, L.; Metta, G.; Sandini, G. Highly sensitive soft tactile sensors for an anthropomorphic robotic hand. IEEE Sens. J. 2015, 15, 4226–4233. [Google Scholar] [CrossRef]
Speed 1 (m/s) | Speed 2 (m/s) | Speed 3 (m/s) | |
---|---|---|---|
Mean Object Speed | 0.82363 | 0.96363 | 1.08727 |
Standard Deviation | 0.01305 | 0.01252 | 0.02127 |
Standard Error | 0.00092 | 0.00089 | 0.00150 |
Number of Successful Grasps | ||||
---|---|---|---|---|
Delay | Predictive | Reactive | p-Value | |
0 ms | 107 | 2.171 | 0.141 | |
5 ms | 106 | 119 | 2.560 | 0.110 |
10 ms | 77 | 24.740 | 0.000 |
Number of Successful Grasps | ||||||
---|---|---|---|---|---|---|
Gripper Offset | Speed | Delay | Predictive | Reactive | p-Value | |
0 ms | 10 | 0.556 | 0.456 | |||
0.82 m/s | 5 ms | 9 | 8 | 0.000 | 1.000 | |
10 ms | 7 | 0.000 | 1.000 | |||
0 ms | 10 | 0.000 | 1.000 | |||
0.00 m | 0.96 m/s | 5 ms | 9 | 10 | 0.000 | 1.000 |
10 ms | 6 | 2.813 | 0.094 | |||
0 ms | 10 | 4.267 | 0.039 * | |||
1.09 m/s | 5 ms | 10 | 5 | 4.267 | 0.039 * | |
10 ms | 7 | 0.208 | 0.648 | |||
0 ms | 10 | 0.556 | 0.456 | |||
0.82 m/s | 5 ms | 10 | 8 | 0.556 | 0.456 | |
10 ms | 10 | 0.556 | 0.456 | |||
0 ms | 8 | 0.000 | 1.000 | |||
0.015 m | 0.96 m/s | 5 ms | 9 | 7 | 0.313 | 0.576 |
10 ms | 10 | 1.569 | 0.210 | |||
0 ms | 6 | 0.000 | 1.000 | |||
1.09 m/s | 5 ms | 10 | 6 | 2.813 | 0.094 | |
10 ms | 9 | 1.067 | 0.302 | |||
0 ms | 10 | 0.000 | 1.000 | |||
0.82 m/s | 5 ms | 10 | 10 | 0.000 | 1.000 | |
10 ms | 5 | 4.267 | 0.039 * | |||
0 ms | 8 | 0.556 | 0.456 | |||
0.030 m | 0.96 m/s | 5 ms | 9 | 10 | 0.000 | 1.000 |
10 ms | 3 | 7.912 | 0.005 * | |||
0 ms | 10 | 1.569 | 0.210 | |||
1.09 m/s | 5 ms | 6 | 7 | 0.000 | 1.000 | |
10 ms | 5 | 0.208 | 0.648 | |||
0 ms | 10 | 1.569 | 0.210 | |||
0.82 m/s | 5 ms | 8 | 7 | 0.000 | 1.000 | |
10 ms | 7 | 0.000 | 1.000 | |||
0 ms | 8 | 0.879 | 0.348 | |||
0.045 m | 0.96 m/s | 5 ms | 8 | 5 | 0.879 | 0.348 |
10 ms | 4 | 0.000 | 1.000 | |||
0 ms | 5 | 0.879 | 0.348 | |||
1.09 m/s | 5 ms | 7 | 8 | 0.000 | 1.000 | |
10 ms | 4 | 1.875 | 0.171 | |||
0 ms | 0 | 12.929 | 0.000 * | |||
0.82 m/s | 5 ms | 0 | 9 | 12.929 | 0.000 * | |
10 ms | 0 | 12.929 | 0.000 * | |||
0 ms | 0 | 16.200 | 0.000 * | |||
0.060 m | 0.96 m/s | 5 ms | 0 | 10 | 16.200 | 0.000 * |
10 ms | 0 | 16.200 | 0.000 * | |||
0 ms | 2 | 7.273 | 0.007 * | |||
1.09 m/s | 5 ms | 1 | 9 | 9.800 | 0.002 * | |
10 ms | 0 | 12.929 | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynch, P.; Cullinan, M.F.; McGinn, C. Adaptive Grasping of Moving Objects through Tactile Sensing. Sensors 2021, 21, 8339. https://doi.org/10.3390/s21248339
Lynch P, Cullinan MF, McGinn C. Adaptive Grasping of Moving Objects through Tactile Sensing. Sensors. 2021; 21(24):8339. https://doi.org/10.3390/s21248339
Chicago/Turabian StyleLynch, Patrick, Michael F. Cullinan, and Conor McGinn. 2021. "Adaptive Grasping of Moving Objects through Tactile Sensing" Sensors 21, no. 24: 8339. https://doi.org/10.3390/s21248339
APA StyleLynch, P., Cullinan, M. F., & McGinn, C. (2021). Adaptive Grasping of Moving Objects through Tactile Sensing. Sensors, 21(24), 8339. https://doi.org/10.3390/s21248339