Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The 25–26 August 2018 Geomagnetic Storm
3.2. Ground-Based GNSS ROTI Observations
3.3. Satellite Observations
4. Conclusions
- The auroral ionospheric irregularities’ oval formed after the geomagnetic storm onset and progressively expanded in size and location towards midlatitudes with the storm development. In its widest part between poleward and equatorward boundaries, the oval was 15–25° in latitudinal span.
- The zones of intense ionospheric irregularities of auroral origin moved as far equatorward as ~55–60° MLAT in the American, European, and Australian longitudinal sectors.
- The main ionospheric trough, associated with the equatorward side of the auroral oval, shifted as far equatorward as 45–50° MLAT in both hemispheres.
- Joint analysis of the ground-based GNSS ROTI together with the Swarm in situ observations showed that topside plasma density irregularities and the main ionospheric trough locations along satellite tracks were consistent with the irregularities oval location specified by GNSS ROTI.
- In the topside ionosphere, the strong plasma density gradients were registered at altitudes of 500 and 860 km onboard Swarm and DMSP satellites during the main and recovery phases of the storm. The satellite observations revealed a large interhemispheric asymmetry in the gradients’ intensity prevailing in the Southern (winter) Hemisphere.
- We report a good consistency between the occurrence of ionospheric irregularities and locations derived from the ground-based GNSS observations and LEO satellite measurements with the auroral activity captured in FUV observations by the DMSP F17 SSUSI instrument.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sugiura, M. Hourly Values of Equatorial Dst for the IGY, in Annual International Geophysical Year; Pergamon Press: Oxford, UK; New York, NY, USA, 1964; Volume 3, p. 9. [Google Scholar]
- Tsurutani, B.T.; Gonzalez, W.D.; Tang, F.; Lee, Y.T. Great magnetic storms. Geophys. Res. Lett. 1992, 19, 73–76. [Google Scholar] [CrossRef]
- Echer, E.; Gonzalez, W.D.; Tsurutani, B.T. Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ −250 nT) during solar cycle 23. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Meng, C.-I. Interplanetary magnetic-field variations and substorm activity. J. Geophys. Res. Space Phys. 1972, 77, 2964–2970. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, 28, 121–190. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Akasofu, S.-I. The development of the auroral substorm. Planet. Space Sci. 1964, 12, 273–282. [Google Scholar] [CrossRef]
- Rostoker, G.; Akasofu, S.-I.; Foster, J.; Greenwald, R.; Kamide, Y.; Kawasaki, K.; Lui, A.; McPherron, R.; Russell, C. Magnetospheric substorms—definition and signatures. J. Geophys. Res. Space Phys. 1980, 85, 1663–1668. [Google Scholar] [CrossRef]
- Fejer, B.G.; Kelley, M.C. Ionospheric irregularities. Rev. Geophys. 1980, 18, 401–454. [Google Scholar] [CrossRef]
- Keskinen, M.J.; Ossakow, S.L. Theories of high-latitude ionospheric irregularities: A review. Radio Sci. 1983, 18, 1077–1091. [Google Scholar] [CrossRef]
- Tsunoda, R.T. High-latitudeFregion irregularities: A review and synthesis. Rev. Geophys. 1988, 26, 719–760. [Google Scholar] [CrossRef] [Green Version]
- Akasofu, S.-I. The auroral oval, the auroral substorm, and their relations with the internal structure of the magnetosphere. Planet. Space Sci. 1966, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Kauristie, K.; Weygand, J.; Pulkkinen, T.I.; Murphree, J.S.; Newell, P.T. Size of the auroral oval: UV ovals and precipitation boundaries compared. J. Geophys. Res. Space Phys. 1999, 104, 2321–2331. [Google Scholar] [CrossRef]
- McIlwain, C.E. Substorm Injection Boundaries. In Magnetospheric Physics; McCormac, B.M., Ed.; Springer: Dordrecht, The Netherlands, 1974; pp. 143–154. [Google Scholar]
- MacDougall, J.W. Distribution of irregularities in the northern polar region determined from HILAT observations. Radio Sci. 1990, 25, 115–124. [Google Scholar] [CrossRef]
- Aarons, J. Global positioning system phase fluctuations at auroral latitudes. J. Geophys. Res. Space Phys. 1997, 102, 17219–17231. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. Dependence of the high-latitude plasma irregularities on the auroral activity indices: A case study of 17 March 2015 geomagnetic storm. Earth Planets Space 2015, 67, 17. [Google Scholar] [CrossRef] [Green Version]
- Aarons, J.; Lin, B. Development of high latitude phase fluctuationsduring the January 10, April 10–11, and May 15, 1997magnetic storms. J. Atmos. Solar-Terr. Phys. 1999, 61, 309–327. [Google Scholar] [CrossRef]
- Aarons, J.; Kersley, L.; Rodger, A.S. The sunspot cycle and “auroral”Flayer irregularities. Radio Sci. 1995, 30, 631–638. [Google Scholar] [CrossRef]
- Coley, W.R.; Heelis, R. Structure and occurrence of polar ionization patches. J. Geophys. Res. Space Phys. 1998, 103, 2201–2208. [Google Scholar] [CrossRef]
- De Franceschi, G.; Alfonsi, L.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C.; Spencer, P.; Wernik, A.W. Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms. J. Atmos. Solar-Terr. Phys. 2007, 70, 879–888. [Google Scholar] [CrossRef]
- Morrissey, T.N.; Shallberg, K.W.; Van Dierendonck, A.J.; Nicholson, M.J. GPS receiver performance characterization under realistic ionospheric phase scintillation environments. Radio Sci. 2004, 39. [Google Scholar] [CrossRef]
- Prikryl, P.; Spogli, L.; Jayachandran, P.T.; Kinrade, J.; Mitchell, C.; Ning, B.; Li, G.; Cilliers, P.J.; Terkildsen, M.; Danskin, D.; et al. Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010. Ann. Geophys. 2011, 29, 2287–2304. [Google Scholar] [CrossRef] [Green Version]
- Jakowski, N.; Mielich, J.; Borries, C.; Cander, L.; Krankowski, A.; Nava, B.; Stankov, S. Large-scale ionospheric gradients over Europe observed in October. J. Atmos. Solar-Terr. Phys. 2008, 70, 1894–1903. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Redmon, R.J. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather 2015, 13, 585–597. [Google Scholar] [CrossRef]
- Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J.M.; Viljanen, A.; Connors, M.; Danskin, D.W.; Jayachandran, P.T.; Jacobsen, K.S.; Andalsvik, Y.L.; Thomas, E.G.; et al. GPS phase scintillation at high latitudes during the geomagnetic storm of 17–18 March 2015. J. Geophys. Res. Space Phys. 2016, 121, 10448–10465. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Morton, Y.T.J.; Zakharenkova, I.; Cherniak, I.; Song, S.; Li, W. Global View of Ionospheric Disturbance Impacts on Kinematic GPS Positioning Solutions During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027681. [Google Scholar] [CrossRef]
- Piersanti, M.; De Michelis, P.; Del Moro, D.; Tozzi, R.; Pezzopane, M.; Consolini, G.; Marcucci, M.F.; Laurenza, M.; Di Matteo, S.; Pignalberi, A.; et al. From the Sun to Earth: Effects of the 25 August 2018 geomagnetic storm. Ann. Geophys. 2020, 38, 703–724. [Google Scholar] [CrossRef]
- Astafyeva, E.; Bagiya, M.S.; Förster, M.; Nishitani, N. Unprecedented Hemispheric Asymmetries during a Surprise Ionospheric Storm: A Game of Drivers. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Jakowski, N.; Béniguel, Y.; De Franceschi, G.; Hernández-Pajares, M.; Jacobsen, K.S.; Stanislawska, I.; Tomasik, L.; Warnant, R.; Wautelet, G. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J. Space Weather Space Clim. 2012, 2, A22. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, K.S. The impact of different sampling rates and calculation time intervals on ROTI values. J. Space Weather Space Clim. 2014, 4, A33. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 2014, 49, 653–662. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I. When Plasma Streams Tie up Equatorial Plasma Irregularities with Auroral Ones. Space Weather 2020, 18, e2019SW002375. [Google Scholar] [CrossRef] [Green Version]
- Mrak, S.; Semeter, J.; Nishimura, Y.; Rodrigues, F.S.; Coster, A.J.; Groves, K. Leveraging Geodetic GPS Receivers for Ionospheric Scintillation Science. Radio Sci. 2020, 55, e2020RS007131. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut. 2018, 22, 69. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Sokolovsky, S. Multi-Instrumental Observation of Storm-Induced Ionospheric Plasma Bubbles at Equatorial and Middle Latitudes. J. Geophys. Res. Space Phys. 2019, 124, 1491–1508. [Google Scholar] [CrossRef]
- Feldstein, Y.; Starkov, G. The auroral oval and the boundary of closed field lines of geomagnetic field. Planet. Space Sci. 1970, 18, 501–508. [Google Scholar] [CrossRef]
- Starkov, G.V. Mathematical model of the auroral boundaries. Geomagn. Aeron. 1994, 34, 331–336. [Google Scholar]
- Paxton, L.J.; Meng, C.I.; Fountain, G.H.; Ogorzalek, B.S.; Darlington, E.H.; Goldsten, J.; Geary, S.; Kusnierkiewicz, D.; Lee, S.C.; Peacock, K. Special Sensor UV Spectrographic Imager (SSUSI): An instrument description. Proc. SPIE 1992, 1745, 2–16. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharenkova, I.; Cherniak, I.; Krankowski, A. Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018. Sensors 2021, 21, 7749. https://doi.org/10.3390/s21227749
Zakharenkova I, Cherniak I, Krankowski A. Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018. Sensors. 2021; 21(22):7749. https://doi.org/10.3390/s21227749
Chicago/Turabian StyleZakharenkova, Irina, Iurii Cherniak, and Andrzej Krankowski. 2021. "Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018" Sensors 21, no. 22: 7749. https://doi.org/10.3390/s21227749
APA StyleZakharenkova, I., Cherniak, I., & Krankowski, A. (2021). Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018. Sensors, 21(22), 7749. https://doi.org/10.3390/s21227749