Flight Planning Optimization of Multiple UAVs for Internet of Things
Abstract
:1. Introduction
2. Related Work
2.1. Applications with UAVs in Wireless Sensor Networks and the IoT Context
2.2. Cloud Drone Sharing Services
2.3. Vehicle Routing Problem with UAVs
2.4. Trajectory Optimization Methods
3. Flight Plan Optimization of Multiple UAVs with Storage Capacity
3.1. Problem Formulation
3.2. UAV Hovering Calculation
4. Evaluation and Results
Model Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Zeng, Y.; Zhang, R. Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Behjati, M.; Mohd Noh, A.B.; Alobaidy, H.A.H.; Zulkifley, M.A.; Nordin, R.; Abdullah, N.F. LoRa Communications as an Enabler for Internet of Drones towards Large-Scale Livestock Monitoring in Rural Farms. Sensors 2021, 21, 5044. [Google Scholar] [CrossRef]
- Chodorek, A.; Chodorek, R.R.; Sitek, P. UAV-Based and WebRTC-Based Open Universal Framework to Monitor Urban and Industrial Areas. Sensors 2021, 21, 4061. [Google Scholar] [CrossRef]
- Spyridis, Y.; Lagkas, T.; Sarigiannidis, P.; Argyriou, V.; Sarigiannidis, A.; Eleftherakis, G.; Zhang, J. Towards 6G IoT: Tracing Mobile Sensor Nodes with Deep Learning Clustering in UAV Networks. Sensors 2021, 21, 3936. [Google Scholar] [CrossRef] [PubMed]
- Both, C.B.; Borges, J.; Gonçalves, L.; Nahum, C.; Macedo, C.; Klautau, A.; Cardoso, K. System Intelligence for UAV-Based Mission Critical with Challenging 5G/B5G Connectivity. arXiv 2021, arXiv:cs.NI/2102.02318. [Google Scholar]
- Hu, H.; Xiong, K.; Qu, G.; Ni, Q.; Fan, P.; Letaief, K.B. AoI-Minimal Trajectory Planning and Data Collection in UAV-Assisted Wireless Powered IoT Networks. IEEE Internet Things J. 2021, 8, 1211–1223. [Google Scholar] [CrossRef]
- Poudel, S.; Moh, S. Hybrid Path Planning for Efficient Data Collection in UAV-Aided WSNs for Emergency Applications. Sensors 2021, 21, 2839. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, T.; Liu, S.; Kacimi, R.; Dhaou, R. Priority-Based Data Collection for UAV-Aided Mobile Sensor Network. Sensors 2020, 20, 3034. [Google Scholar] [CrossRef]
- Yang, Q.; Yoo, S.J. Optimal UAV path planning: Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms. IEEE Access 2018, 6, 13671–13684. [Google Scholar] [CrossRef]
- Galkin, B.; Kibilda, J.; DaSilva, L.A. UAVs as Mobile Infrastructure: Addressing Battery Lifetime. IEEE Commun. Mag. 2019, 57, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Ye, F.; Wang, L.C.; Wang, L.; Tian, Y.; Han, Z. UAV-Assisted Wireless Charging for Energy-Constrained IoT Devices Using Dynamic Matching. IEEE Internet Things J. 2020, 7, 4789–4800. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Xu, W.; Xu, Z.; Jia, X.; Xu, Y.; Kan, H. Data Collection Maximization in IoT-Sensor Networks Via an Energy-Constrained UAV. IEEE Trans. Mob. Comput. 2021. [Google Scholar] [CrossRef]
- Liang, H.; Gao, W.; Nguyen, J.H.; Orpilla, M.F.; Yu, W. Internet of Things Data Collection Using Unmanned Aerial Vehicles in Infrastructure Free Environments. IEEE Access 2020, 8, 3932–3944. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, X.; Hu, Z.; Lu, Z.; Miao, J.; Sun, C.; Qi, H. Multi-UAV Collaborative Data Collection for IoT Devices Powered by Battery. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, L.; Yao, H.; Zhang, X.; Wang, J.; Liu, Y. Multi-UAV Deployment for MEC Enhanced IoT Networks. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 436–441. [Google Scholar] [CrossRef]
- Wang, Z.; Sheu, J.B. Vehicle routing problem with drones. Transp. Res. Part B Methodol. 2019, 122, 350–364. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Seiber, C.; Nowlin, D.; Landowski, B.; Tolentino, M.E. Tracking hazardous aerial plumes using IoT-enabled drone swarms. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 377–382. [Google Scholar]
- Kirichek, R. The Model of Data Delivery from the Wireless Body Area Network to The Cloud Server with the Use Of Unmanned Aerial Vehicles. In Proceedings of the 30th Conference on Modelling and Simulation, ECMS, Regensburg, Germany, 1 May–3 June 2016; pp. 603–606. [Google Scholar]
- Jiang, F.; Swindlehurst, A.L. Optimization of UAV heading for the ground-to-air uplink. IEEE J. Sel. Areas Commun. 2012, 30, 993–1005. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Zhang, R.; Lim, T.J. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Trans. Commun. 2016, 64, 4983–4996. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [Google Scholar] [CrossRef]
- Sujit, P.; Lucani, D.E.; Sousa, J. Joint route planning for uav and sensor network for data retrieval. In Proceedings of the 2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 688–692. [Google Scholar]
- Choi, S.C.; Sung, N.M.; Park, J.H.; Ahn, I.Y.; Kim, J. Enabling drone as a service: OneM2M-based UAV/drone management system. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 18–20. [Google Scholar]
- Koubâa, A.; Qureshi, B.; Sriti, M.F.; Javed, Y.; Tovar, E. A service-oriented cloud-based management system for the internet-of-drones. In Proceedings of the 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, Portugal, 26–28 April 2017; pp. 329–335. [Google Scholar]
- Isaacs, J.T. Uav Data Mule Vehicle Routing Problems in Sparse Sensor Networks; University of California: Santa Barbara, CA, USA, 2012. [Google Scholar]
- Fügenschuh, A.; Müllenstedt, D. Flight Planning for Unmanned Aerial Vehicles; Military Operations Research; Springer: Boston, MA, USA, 2021; Volume 26, pp. 49–71. [Google Scholar]
- Semiz, F. Task Assignment and Scheduling in UAV Mission Planning with Multiple Constraints; Middle East Technical University: Ankara, Turkey, 2015. [Google Scholar]
- Guerriero, F.; Surace, R.; Loscri, V.; Natalizio, E. A multi-objective approach for unmanned aerial vehicle routing problem with soft time windows constraints. Appl. Math. Model. 2014, 38, 839–852. [Google Scholar] [CrossRef]
- Adbelhafiz, M.; Mostafa, A.; Girard, A. Vehicle routing problem instances: Application to multi-uav mission planning. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON, Canada, 2–5 August 2010; p. 8435. [Google Scholar]
- Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, W.P.; Battarra, M.; Fliege, J. The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review. Comput. Ind. Eng. 2018, 120, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Maity, A.; Holzapfel, F. Free Final-Time Constrained Sequential Quadratic Programming–Based Flight Vehicle Guidance. J. Guid. Control. Dyn. 2021, 44, 181–189. [Google Scholar] [CrossRef]
- Hong, H.; Piprek, P.; Gerdts, M.; Holzapfel, F. Computationally Efficient Trajectory Generation for Smooth Aircraft Flight Level Changes. J. Guid. Control. Dyn. 2021, 44, 1532–1540. [Google Scholar] [CrossRef]
- Hong, H.; Piprek, P.; Afonso, R.J.M.; Holzapfel, F. Hierarchical Parameterization for Seamless Transition Trajectory Generation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2878–2888. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, M.; Dang, S.; Yu, L.; Wang, Y. Trajectory design and resource allocation for UAV energy minimization in a rotary-wing UAV-enabled WPCN. Alex. Eng. J. 2021, 60, 1787–1796. [Google Scholar] [CrossRef]
- Sousa, A.M.B.M.d. Easy Peripherals for the Internet of Things. Master’s Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2016. [Google Scholar]
- Sørensen, J.N. One-Dimensional Axial Momentum Theory. In General Momentum Theory for Horizontal Axis Wind Turbines; Springer International Publishing: Cham, Switzerland, 2016; pp. 9–42. [Google Scholar] [CrossRef]
- Janjarassuk, U.; Masuchun, R. Cost and reliability analyses for the vehicle routing problem. In Proceedings of the 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 338–341. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, L.; Riker, A.; Ribeiro, M.; Both, C.; Sousa, F.; Moreira, W.; Cardoso, K.; Oliveira-Jr, A. Flight Planning Optimization of Multiple UAVs for Internet of Things. Sensors 2021, 21, 7735. https://doi.org/10.3390/s21227735
Rodrigues L, Riker A, Ribeiro M, Both C, Sousa F, Moreira W, Cardoso K, Oliveira-Jr A. Flight Planning Optimization of Multiple UAVs for Internet of Things. Sensors. 2021; 21(22):7735. https://doi.org/10.3390/s21227735
Chicago/Turabian StyleRodrigues, Lucas, André Riker, Maria Ribeiro, Cristiano Both, Filipe Sousa, Waldir Moreira, Kleber Cardoso, and Antonio Oliveira-Jr. 2021. "Flight Planning Optimization of Multiple UAVs for Internet of Things" Sensors 21, no. 22: 7735. https://doi.org/10.3390/s21227735
APA StyleRodrigues, L., Riker, A., Ribeiro, M., Both, C., Sousa, F., Moreira, W., Cardoso, K., & Oliveira-Jr, A. (2021). Flight Planning Optimization of Multiple UAVs for Internet of Things. Sensors, 21(22), 7735. https://doi.org/10.3390/s21227735