Pragmatic Micrometre to Millimetre Calibration Using Multiple Methods for Low-Coherence Interferometer in Embedded Metrology Applications
Abstract
:1. Introduction
2. Method
2.1. Experimental Setup
2.2. Measurement Strategy
2.2.1. Method 1: Interferometer
2.2.2. Method 2: Step Height
- Take a profile measurement from slip gauge 1 to slip gauge 2, where slip gauge 1 thickness > slip gauge 2 thickness;
- Determine the distance offset of each slip gauge surface from the sensor;
- Relocate the sensor to the lateral start position;
- Move the sample away from the sensor until the sensor readout is the same as it was over slip gauge 2 in the previous line scan;
- Repeat the process until the entire operational range is covered.
2.2.3. Method 3: Glass Coverslip
3. Measurement Results
3.1. Calibration Results—Method 1: Reference Interferometer
3.2. Calibration Results—Method 2: Step-Height Reference Material
3.3. Calibration Results—Method 3: Coverslip Reference Material
3.4. Method Comparison
3.5. Residual Error and Dataset Sparsity
- Set the number of points to sample;
- Get the index of the points using Python’s random.sample() library function;
- Calculate a linear fit using the points acquired;
- Calculate the residual error using the linear fit coefficients for the entire dataset;
- Calculate the 2 STD of the residual error;
- Once all of the set iterations have been completed, calculate the average 2 STD for each dataset frequency.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Haitjema, H.; Fang, F.; Leach, R.; Cheung, C.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef] [Green Version]
- Hovell, T.; Matharu, R.S.; Petzing, J.N.; Justham, L.; Kinnell, P. Lensless fiber-deployed low-coherence interferometer for in-situ measurements in nonideal environments. Opt. Eng. 2020, 59, 1–11. [Google Scholar] [CrossRef]
- Hovell, T.; Petzing, J.; Justham, L.; Kinnell, P. In-situ measurement of electrochemical jet machining using low coherence interferometry. In Proceedings of the Euspen’s 20th International Conference & Exhibition, Euspen, Geneva, Switzerland, 8–12 June 2020. [Google Scholar]
- Hovell, T.; Petzing, J.N.; Justham, L.; Kinnell, P. From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement. Appl. Sci. 2020, 10, 8590. [Google Scholar] [CrossRef]
- Carmignato, S.; De Chiffre, L.; Bosse, H.; Leach, R.; Balsamo, A.; Estler, W. Dimensional artefacts to achieve metrological traceability in advanced manufacturing. CIRP Ann. 2020, 69, 693–716. [Google Scholar] [CrossRef]
- Lewis, A.J.; Hughes, B.; Aldred, P.J. Long-term study of gauge block interferometer performance and gauge block stability. Metrologia 2010, 47, 473. [Google Scholar] [CrossRef]
- Claverley, J.; Leach, R. A review of the existing performance verification infrastructure for micro-CMMs. Precis. Eng. 2015, 39, 1–15. [Google Scholar] [CrossRef]
- Díaz, J.D.; Stritzel, J.; Rahlves, M.; Majdani, O.; Reithmeier, E.; Ortmaier, T.; Roth, B. One step geometrical calibration method for optical coherence tomography. J. Opt. 2015, 18, 015301. [Google Scholar] [CrossRef]
- Leach, R.K.; Giusca, C.; Haitjema, H.; Evans, C.; Jiang, X. Calibration and verification of areal surface texture measuring instruments. CIRP Ann. 2015, 64, 797–813. [Google Scholar] [CrossRef]
- Thalmann, R.; Küng, A.; Meli, F.; Battaglia, C.; Marxer, M.; Jordi, T. Versatile calibration artefact for optical micro-CMMs based on micro-spheres with engineered surface texture. In Proceedings of the MacroScale 2017–Recent Developments in Traceable Dimensional Measurements, Espoo, Finland, 17–19 October 2017. [Google Scholar]
- Sandrian, M.G.; Tomlins, P.; Woolliams, P.; Rasakanthan, J.; Lee, G.C.; Yang, A.; Považay, B.; Alex, A.; Sugden, K.; Drexler, W. Three-dimensional calibration targets for optical coherence tomography. In Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8229, p. 822914. [Google Scholar]
- Montonen, R.; Kassamakov, I.; Hæggström, E.; Österberg, K. Quantifying height of ultraprecisely machined steps on oxygen-free electronic copper disc using Fourier-domain short coherence interferometry. Opt. Eng. 2016, 55, 014103. [Google Scholar] [CrossRef]
- Lu, Y.; Gordon, N.; Robinson, D.; Coldrick, B.; Mezentsev, V.; Menduni, F.; Fratini, A.; Sugden, K. Non-planar calibration phantoms for optical coherence tomography. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10544, p. 105441B. [Google Scholar]
- Boedecker, S.; Rembe, C.; Schmid, H.; Hageney, T.; Köhnlein, T. Calibration of the z-axis for large-scale scanning white-light interferometers. J. Phys.-Conf. Ser. 2011, 311, 012027. [Google Scholar] [CrossRef]
- Bauer, W.; Hüser, D.; Gerbert, D. Simple method to determine linearity deviations of topography measuring instruments with a large range axial scanning system. Precis. Eng. 2020, 64, 243–248. [Google Scholar] [CrossRef]
- Tan, K.M.; Mazilu, M.; Chow, T.H.; Lee, W.M.; Taguchi, K.; Ng, B.K.; Sibbett, W.; Herrington, C.S.; Brown, C.T.A.; Dholakia, K. In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt. Express 2009, 17, 2375–2384. [Google Scholar] [CrossRef]
- Vakhtin, A.B.; Kane, D.J.; Wood, W.R.; Peterson, K.A. Common-path interferometer for frequency-domain optical coherence tomography. Appl. Opt. 2003, 42, 6953–6958. [Google Scholar] [CrossRef] [Green Version]
- Leitgeb, R.; Hitzenberger, C.K.; Fercher, A.F. Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 2003, 11, 889–894. [Google Scholar] [CrossRef] [PubMed]
- BS EN ISO 25178-600:2019. Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 600: Metrological Characteristics for Areal-Topograpgy Measuring Methods; Standard; International Organization for Standardization: Geneva, Switzerland, 2019.
- Ferri, C.; Faraway, J.; Brousseau, E. Calibration of a white light interferometer for the measurement of micro-scale dimensions. Int. J. Adv. Manuf. Technol. 2010, 47, 125–135. [Google Scholar] [CrossRef] [Green Version]
- BS EN ISO 3650:1999. Geometrical Product Specifications (GPS). Length Standards. Gauge Blocks; Standard; International Organization for Standardization: Geneva, Switzerland, 1999.
- BS ISO 230-1:2012. Test Code for Machine Tools. Part 1: Geometric Accuracy of Machines Operating under No-Load or Finishing Conditions; Standard; International Organization for Standardization: Geneva, Switzerland, 2012.
- Verma, Y.; Rao, K.; Suresh, M.; Patel, H.; Gupta, P. Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography. Appl. Phys. B 2007, 87, 607–610. [Google Scholar] [CrossRef]
- Uhlhorn, S.R.; Borja, D.; Manns, F.; Parel, J.M. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vis. Res. 2008, 48, 2732–2738. [Google Scholar] [CrossRef] [Green Version]
- De Castro, A.; Ortiz, S.; Gambra, E.; Siedlecki, D.; Marcos, S. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging. Opt. Express 2010, 18, 21905–21917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtkowski, M.; Leitgeb, R.; Kowalczyk, A.; Bajraszewski, T.; Fercher, A.F. In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 2002, 7, 457–463. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Cooper, P.R. Refractive-index measurements of paraffin, a silicone elastomer, and an epoxy resin over the 500–1500-nm spectral range. Appl. Opt. 1982, 21, 3413–3415. [Google Scholar] [CrossRef]
- Glasse, B.; Zerwas, A.; Guardani, R.; Fritsching, U. Refractive indices of metal working fluid emulsion components. Meas. Sci. Technol. 2014, 25, 035205. [Google Scholar] [CrossRef]
Media | RI | RI | STD 2 (m) |
---|---|---|---|
Air | 1.00 | 1.00 | ±0.135 |
Water | 1.34 | 1.33 [27] | ±0.144 |
Paraffin | 1.44 | 1.47 [28] | ±0.155 |
MWF | 1.35 | 1.48 [29] | ±0.159 |
Interferometer | Step Heights | Glass Coverslip | |
---|---|---|---|
Positives | Fast—21 s | Inexpensive | Fast—21 s |
Variable resolution | Simple to use | Inexpensive | |
Versatile | Increased result stability | Least interaction with mechanical system | |
Variable step heights | Simple to use | ||
Can stack for multi-depth measurements | |||
Robust | |||
Negatives | Expensive equipment | Very slow—3.6 h | Fixed resolution |
Increased impact from Abbé errors & Cosine errors | Thickness variation produces calibration uncertainty | Thickness variation produces calibration uncertainty | |
System complexity | Prone to wringing errors | Resolution limited to coherence length | |
Difficult to setup | Fixed resolution | Fixed resolution | |
Influence from mechanical system | Weak signal response at high OPD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovell, T.; Petzing, J.; Justham, L.; Kinnell, P. Pragmatic Micrometre to Millimetre Calibration Using Multiple Methods for Low-Coherence Interferometer in Embedded Metrology Applications. Sensors 2021, 21, 5101. https://doi.org/10.3390/s21155101
Hovell T, Petzing J, Justham L, Kinnell P. Pragmatic Micrometre to Millimetre Calibration Using Multiple Methods for Low-Coherence Interferometer in Embedded Metrology Applications. Sensors. 2021; 21(15):5101. https://doi.org/10.3390/s21155101
Chicago/Turabian StyleHovell, Tom, Jon Petzing, Laura Justham, and Peter Kinnell. 2021. "Pragmatic Micrometre to Millimetre Calibration Using Multiple Methods for Low-Coherence Interferometer in Embedded Metrology Applications" Sensors 21, no. 15: 5101. https://doi.org/10.3390/s21155101
APA StyleHovell, T., Petzing, J., Justham, L., & Kinnell, P. (2021). Pragmatic Micrometre to Millimetre Calibration Using Multiple Methods for Low-Coherence Interferometer in Embedded Metrology Applications. Sensors, 21(15), 5101. https://doi.org/10.3390/s21155101