Design of Double-Layer Electrically Extremely Small-Size Displacement Sensor
Abstract
:1. Introduction
2. Design
3. Experiment and Results
4. Discussion
4.1. Influence of Substrate Thickness
4.2. Robustness of Excitation Structure
4.3. Expansion of Displacement Sensing Dimension
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.J.; Hong, J.T.; Choi, S.J.; Kim, H.S.; Park, W.K.; Han, S.T.; Park, J.Y.; Lee, S.; Kim, D.S.; Ahn, Y.H. Detection of microorganisms using terahertz metamaterials. Sci. Rep. 2014, 4, 4988. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Cheng, M.M.C.; Chen, J.C.M.; Wu, C.T.M. Microwave Gas Sensor based on Graphene-loaded Substrate Integrated Waveguide Cavity Resonator. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.K.; Delmonte, N.; Lamecki, A.; Mrozowski, M.; Bozzi, M. Design of Microwave-Based Angular Displacement Sensor. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 306–308. [Google Scholar] [CrossRef]
- Rao, F.; Yu, Z.; Huang, X.; Hu, S.; Jin, Y.; Yang, H. Metamaterial-inspired rotation sensor based on complementary single split-ring resonator (CSSRR). J. Electromagn. Waves Appl. 2018, 32, 1664–1674. [Google Scholar] [CrossRef]
- Shaterian, Z.; Horestani, A.K.; Fumeaux, C. Rotation sensing based on the symmetry properties of an open-ended microstrip line loaded with a split ring resonator. In Proceedings of the 2015 German Microwave Conference, Nuremberg, Germany, 16–18 March 2015; pp. 33–35. [Google Scholar]
- Horestani, A.K.; Fumeaux, C.; Al-Sarawi, S.F.; Abbott, D. Displacement Sensor Based on Diamond-Shaped Tapered Split Ring Resonator. IEEE Sens. J. 2013, 13, 1153–1160. [Google Scholar] [CrossRef]
- Horestani, A.K.; Naqui, J.; Shaterian, Z.; Abbott, D.; Fumeaux, C.; Martín, F. Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators. Sens. Actuators A Phys. 2014, 210, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Rezaee, M.; Joodaki, M. Two-Dimensional Displacement Sensor Based on CPW Line Loaded by Defected Ground Structure with Two Separated Transmission Zeroes. IEEE Sens. J. 2017, 17, 994–999. [Google Scholar] [CrossRef]
- Horestani, A.K.; Naqui, J.; Abbott, D.; Fumeaux, C.; Martín, F. Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators. Electron. Lett. 2014, 50, 620–622. [Google Scholar] [CrossRef] [Green Version]
- Joodaki, M.; Rezaee, M. Coplanar Waveguide (CPW) Loaded with an Electromagnetic Bandgap (EBG) Structure: Modeling and Application to Displacement Sensor. IEEE Sens. J. 2016, 16, 3034–3040. [Google Scholar] [CrossRef]
- Basseri, J.; Joodaki, M. Realization of a Low-Cost Displacement Sensor on PCB With Two-Metal-Layer Coplanar Waveguide Loaded by an EBG Structure. IEEE Sens. J. 2017, 17, 4797–4804. [Google Scholar] [CrossRef]
- Wang, B.; Teo, K.H.; Orlik, P. An accurate contactless position sensor with planar resonators. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Soltan, A.; Sadeghzadeh, R.A.; Mohammad-Ali-Nezhad, S. High sensitivity simple structured displacement sensor using corrugated substrate-integrated waveguide (CSIW). IET Microw. Antennas Propag. 2020, 14, 414–418. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Daneshmand, M. Multifunctional Ultrahigh Sensitive Microwave Planar Sensor to Monitor Mechanical Motion: Rotation, Displacement, and Stretch. Sensors 2020, 20, 1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Liu, Y.; Chen, S.; Zhao, P.; Peng, L.; Dong, L.; Wang, G. Novel Microwave Sensors Based on Split Ring Resonators for Measuring Permittivity. IEEE Access. 2018, 6, 26111–26120. [Google Scholar] [CrossRef]
- Powell, D.A.; Lapine, M.; Gorkunov, M.V.; Shadrivov, I.V.; Kivshar, Y.S. Metamaterial tuning by manipulation of near-field interaction. Phys. Rev. B 2010, 82, 155128. [Google Scholar] [CrossRef] [Green Version]
- Ekmekci, E.; Strikwerda, A.C.; Fan, K.; Keiser, G.; Zhang, X.; Turhan-Sayan, G.; Averitt, R.D.; Ekmekci, E.; Strikwerda, A.C.; Fan, K.; et al. Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators. Phys. Rev. B 2011, 83, 193103. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, Z.; Shariaty, P.; Nosrati, M.; Hashisho, Z.; Daneshmand, M. Dual-Band Microwave Circuits for Selective Binary Gas Sensing System. IEEE Trans. Microw. Theory Tech. 2019, 69, 2936–3948. [Google Scholar] [CrossRef]
- Abbasi, Z.; Zarifi, M.H.; Shariati, P.; Hashisho, Z.; Daneshmand, M. Flexible coupled microwave ring resonators for contactless microbead assisted volatile organic compound detection. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1228–1231. [Google Scholar]
- Segura-Quijano, F.; García-Cantón, J.; Sacristán, J. Wireless powering of single-chip systems with integrated coil and external wire-loop resonator. Appl. Phys. Lett. 2008, 92, 83–259. [Google Scholar] [CrossRef] [Green Version]
- Grant, I.S.; Phillips, W.R. Electromagnetism; Wiley: Chichester, UK, 1990. [Google Scholar]
- Pozar, D.M. Microwave Engineering; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
Parameters | l | lm | t | g | lb | wb | gb | tm |
---|---|---|---|---|---|---|---|---|
Value (mm) | 40 | 30 | 1 | 3 | 8 | 1 | 1 | 0.5 |
Ref. | Type | Operating Frequency | Sensitivity | Range (mm) | Q | Size (mm) | Electrical Size (λ02) | Measurement Dimension |
---|---|---|---|---|---|---|---|---|
[7] | CPW with SRR | 1.17 GHz | 23.6 dB·mm−1 | 1.2 | 19 | 30.3 × 15.3 | 7.06 × 10−3 | 1-D |
[8] | Microstrip line with SRRs | 1.6 GHz | 0.029 f0·mm−1 | 5 | 53 | 26.3 × 30.9 | 4.41 × 10−2 | 1-D |
[9] | CPW with DGS | 3.8 GHz | 0.228 f0·mm−1 | 3 | 34 | 42.8 × 26.1 | 1.79 × 10−1 | 1-D |
[14] | Corrugated SIW | 2.4 GHz | 0.011 f0·mm−1 | 15 | 65 | 80 × 50 | 2.56 × 10−1 | 1-D |
[15] | Microstrip line with SRRs | 5.2 GHz | 0.096 f0·mm−1 | 5 | 226 | 7.5 × 7.5 | 1.69 × 10−2 | 1-D |
This work | Magnetic dipole with SRRs | 378 MHz | 0.082 f0·mm−1 | 9 | 143.7 | 40 × 40 | 2.5 × 10−3 | 1-D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-D.; Han, F.-Y.; Zhao, J.; Zhang, Z.-W.; Wang, D.; Tan, Y.-H.; Liu, P.-K. Design of Double-Layer Electrically Extremely Small-Size Displacement Sensor. Sensors 2021, 21, 4923. https://doi.org/10.3390/s21144923
Wang Y-D, Han F-Y, Zhao J, Zhang Z-W, Wang D, Tan Y-H, Liu P-K. Design of Double-Layer Electrically Extremely Small-Size Displacement Sensor. Sensors. 2021; 21(14):4923. https://doi.org/10.3390/s21144923
Chicago/Turabian StyleWang, Yi-Dong, Feng-Yuan Han, Jin Zhao, Zi-Wen Zhang, Di Wang, Yun-Hua Tan, and Pu-Kun Liu. 2021. "Design of Double-Layer Electrically Extremely Small-Size Displacement Sensor" Sensors 21, no. 14: 4923. https://doi.org/10.3390/s21144923
APA StyleWang, Y.-D., Han, F.-Y., Zhao, J., Zhang, Z.-W., Wang, D., Tan, Y.-H., & Liu, P.-K. (2021). Design of Double-Layer Electrically Extremely Small-Size Displacement Sensor. Sensors, 21(14), 4923. https://doi.org/10.3390/s21144923