An Integrated Individual Environmental Exposure Assessment System for Real-Time Mobile Sensing in Environmental Health Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Integrated Objective Environmental Exposure Monitoring Devices
2.2. Integrated Subjective Environmental Exposure Sensing Tool
2.3. Additional Sociodemographic Information and Environmental Context GIS Data
2.4. Data Collection in the Chicago Pilot Project
3. Result and Discussion
3.1. Exploratory Analysis
3.1.1. Individual Noise Exposure Assessment
3.1.2. Composite Environmental Health Analysis
3.2. Limitations and Future Direction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seliske, L.M.; Pickett, W.; Boyce, W.F.; Janssen, I. Association between the food retail environment surrounding schools and overweight in Canadian youth. Public Health Nutr. 2009, 12, 1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaix, B. Geographic Life Environments and Coronary Heart Disease: A Literature Review, Theoretical Contributions, Methodological Updates, and a Research Agenda. Annu. Rev. Public Health 2009, 30, 81–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koohsari, M.J.; Mavoa, S.; Villianueva, K.; Sugiyama, T.; Badland, H.; Kaczynski, A.T.; Owen, N.; Giles-Corti, B. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda. Health Place 2015, 33, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Salvo, D.; Schipperijn, J.; Smith, G.; Cain, K.L.; et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef] [Green Version]
- Shareck, M.; Kestens, Y.; Vallée, J.; Datta, G.; Frohlich, K.L.; Vallee, J.; Datta, G.; Frohlich, K.L. The added value of accounting for activity space when examining the association between tobacco retailer availability and smoking among young adults. Tob. Control 2015, 25, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.-P.; Kenda, L.L.; Wewers, M.E.; Ferketich, A.K.; Klein, E.G. Sociogeographic context, protobacco advertising, and smokeless tobacco usage in the Appalachian Region of Ohio (USA). In Proceedings of the International Medical Geography Symposium, Durham, UK, 10–15 July 2011. [Google Scholar]
- Epstein, D.H.; Tyburski, M.; Craig, I.M.; Phillips, K.A.; Jobes, M.L.; Vahabzadeh, M.; Mezghanni, M.; Lin, J.L.; Furr-Holden, C.D.M.; Preston, K.L. Real-time tracking of neighborhood surroundings and mood in urban drug misusers: Application of a new method to study behavior in its geographical context. Drug Alcohol Depend. 2014, 134, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Fowler, P.J.; Tompsett, C.J.; Braciszewski, J.M.; Jacques-Tiura, A.J.; Baltes, B.B. Community violence: A meta-analysis on the effect of exposure and mental health outcomes of children and adolescents. Dev. Psychopathol. 2009, 21, 227. [Google Scholar] [CrossRef]
- Curtis, S. Space, Place and Mental Health; Ashgate Publishing Ltd.: London, UK, 2010; ISBN 0754673316. [Google Scholar]
- Kwan, M.-P. The limits of the neighborhood effect: Contextual uncertainties in geographic, environmental health, and social science research. Ann. Am. Assoc. Geogr. 2018, 108, 1482–1490. [Google Scholar] [CrossRef]
- Kim, J.; Kwan, M.-P. Beyond commuting: Ignoring individuals’ activity-travel patterns may lead to inaccurate assessments of their exposure to traffic congestion. Int. J. Environ. Res. Public Health 2018, 16, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Kwan, M.P.; Zhou, S. The uncertain geographic context problem in the analysis of the relationships between obesity and the built environment in Guangzhou. Int. J. Environ. Res. Public Health 2018, 15, 308. [Google Scholar] [CrossRef] [Green Version]
- Schwanen, T.; Wang, D. Well-being, context, and everyday activities in space and time. Ann. Assoc. Am. Geogr. 2014, 104, 833–851. [Google Scholar] [CrossRef]
- Buck, C.; Kneib, T.; Tkaczick, T.; Konstabel, K.; Pigeot, I. Assessing opportunities for physical activity in the built environment of children: Interrelation between kernel density and neighborhood scale. Int. J. Health Geogr. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lee, K.; Kwan, M.-P. Environmental influences on leisure-time physical inactivity in the US: An exploration of spatial non-stationarity. ISPRS Int. J. Geo-Inf. 2018, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.-P. The neighborhood effect averaging problem (NEAP): An elusive confounder of the neighborhood effect. Int. J. Environ. Res. Public Health 2018, 15, 1841. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.-P. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Kwan, M.-P. Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility. Ann. Assoc. Am. Geogr. 2013, 103, 1078–1086. [Google Scholar] [CrossRef]
- Park, Y.M.; Kwan, M.-P. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [Google Scholar] [CrossRef]
- Kwan, M.-P. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Ma, J.; Li, C.; Kwan, M.; Kou, L.; Chai, Y. Assessing personal noise exposure and its relationship with mental health in Beijing based on individuals ’ space-time behavior. Environ. Int. 2020, 139, 105737. [Google Scholar] [CrossRef]
- Ma, X.; Li, X.; Kwan, M.-P.; Chai, Y. Who could not avoid exposure to high levels of residence-based pollution by daily mobility? Evidence of air pollution exposure from the perspective of the neighborhood effect averaging problem (NEAP). Int. J. Environ. Res. Public Health 2020, 17, 1223. [Google Scholar] [CrossRef] [Green Version]
- Browning, M.; Lee, K. Within what distance does “greenness” best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. Int. J. Environ. Res. Public Health 2017, 14, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, C.A.; Clark, A.F.; Gilliland, J.A. Built environment influences of children’s physical activity: Examining differences by neighbourhood size and sex. Int. J. Environ. Res. Public Health 2016, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kwan, M.-P. An analytical framework for integrating the spatiotemporal dynamics of environmental context and individual mobility in exposure assessment: A study on the relationship between food environment exposures and body weight. Int. J. Environ. Res. Public Health 2018, 15, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, M.-P.; Wang, J.; Tyburski, M.; Epstein, D.H.; Kowalczyk, W.J.; Preston, K.L. Uncertainties in the geographic context of health behaviors: A study of substance users’ exposure to psychosocial stress using GPS data. Int. J. Geogr. Inf. Sci. 2019, 33, 1176–1195. [Google Scholar] [CrossRef]
- Kerr, J.; Duncan, S.; Schipperjin, J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution: Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Chaix, B.; Méline, J.; Duncan, S.; Merrien, C.; Karusisi, N.; Perchoux, C.; Lewin, A.; Labadi, K.; Kestens, Y. GPS tracking in neighborhood and health studies: A step forward for environmental exposure assessment, A step backward for causal inference? Health Place 2013, 21, 46–51. [Google Scholar] [CrossRef]
- Van der Spek, S.; Van Schaick, J.; De Bois, P.; De Haan, R. Sensing Human Activity: GPS Tracking. Sensors 2009, 9, 3033–3055. [Google Scholar] [CrossRef]
- Honicky, R.; Brewer, E.A.; Paulos, E.; White, R. N-SMARTS: Networked suite of mobile atmospheric real-time sensors. In Proceedings of the Second ACM SIGCOMM Workshop on Networked Systems for Developing Regions, Seattle, WA, USA, 18 August 2008; pp. 1–5. [Google Scholar]
- Dutta, P.; Aoki, P.M.; Kumar, N.; Mainwaring, A.; Myers, C.; Willett, W.; Woodruff, A. Common Sense: Participatory urban sensing using a network of handheld air quality monitors. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, Berkeley, CA, USA, 4–6 November 2009; pp. 349–350. [Google Scholar]
- Kanjo, E.; Benford, S.; Paxton, M.; Chamberlain, A.; Fraser, D.S.; Woodgate, D.; Crellin, D.; Woolard, A. MobGeoSen: Facilitating personal geosensor data collection and visualization using mobile phones. Pers. Ubiquitous Comput. 2008, 12, 599–607. [Google Scholar] [CrossRef]
- Foraster, M.; Künzli, N.; Aguilera, I.; Rivera, M.; Agis, D.; Vila, J.; Bouso, L.; Deltell, A.; Marrugat, J.; Ramos, R.; et al. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ. Health Perspect. 2014, 122, 1193–1200. [Google Scholar] [CrossRef] [Green Version]
- Künzli, N.; Kaiser, R.; Medina, S.; Studnicka, M.; Chanel, O.; Filliger, P.; Herry, M.; Horak, F.; Puybonnieux-Texier, V.; Quénel, P.; et al. Public-health impact of outdoor and traffic-related air pollution: A European assessment. Lancet 2000, 356, 795–801. [Google Scholar] [CrossRef]
- Caspi, C.E.; Sorensen, G.; Subramanian, S.V.; Kawachi, I. The local food environment and diet: A systematic review. Health Place 2012, 18, 1172–1187. [Google Scholar] [CrossRef] [Green Version]
- Steinle, S.; Reis, S.; Sabel, C.E.; Semple, S.; Twigg, M.M.; Braban, C.F.; Leeson, S.R.; Heal, M.R.; Harrison, D.; Lin, C.; et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 2015, 508, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzivian, L.; Dlugaj, M.; Winkler, A.; Weinmayr, G.; Hennig, F.; Fuks, K.B.; Vossoughi, M.; Schikowski, T.; Weimar, C.; Erbel, R.; et al. Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: A cross-sectional analysis of the Heinz Nixdorf recall study. Environ. Health Perspect. 2016, 124, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- AQ-SPEC Air Quality Sensor Performance Evaluation Center Field Evaluation AirBeam PM Sensor. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/airbeam---field-evaluation.pdf?sfvrsn=4 (accessed on 1 May 2021).
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Brown, S.G.; McCarthy, M.C.; Pavlovic, N.R.; Stanton, L.G.; Snyder, J.L.; D’Andrea, S.; Hafner, H.R. Measuring spatial and temporal PM2.5 variations in Sacramento, California, communities using a network of low-cost sensors. Sensors 2019, 19, 4701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosbie, T. Using Activity Diaries: Some Methodological Lessons. J. Res. Pract. 2006, 2, 1–13. [Google Scholar]
- Stewart, O.T.; Moudon, A.V.; Fesinmeyer, M.D.; Zhou, C.; Saelens, B.E. The association between park visitation and physical activity measured with accelerometer, GPS, and travel diary. Health Place 2016, 38, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Kajsa Ellegård A time-geographical approach to the study of everyday life of individuals—A challenge of complexity. GeoJournal 1999, 48, 167–175. [CrossRef]
- Chen, J.; Shaw, S.L.; Yu, H.; Lu, F.; Chai, Y.; Jia, Q. Exploratory data analysis of activity diary data: A space-time GIS approach. J. Transp. Geogr. 2011, 19, 394–404. [Google Scholar] [CrossRef]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Juhani Jantunen, M.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor time-microenvironment-activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Dons, E.; Int Panis, L.; Van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time-activity patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [Google Scholar] [CrossRef]
- Maher, J.P.; Dzubur, E.; Huh, J.; Intille, S.; Dunton, G.F. Within-Day Time-Varying Associations Between Behavioral Cognitions and Physical Activity in Adults. J. Sport Exerc. Psychol. 2016, 38, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Seidman, M.D.; Standring, R. Noise and Quality of Life. Int. J. Environ. Res. Public Health 2010, 7, 3730–3738. [Google Scholar] [CrossRef] [Green Version]
- Kashdan, T.B.; Collins, R.L. Social anxiety and the experience of positive emotion and anger in everyday life: An ecological momentary assessment approach. Anxiety Stress Coping 2010, 23, 259–272. [Google Scholar] [CrossRef]
- Smyth, J.M.; Wonderlich, S.A.; Sliwinski, M.J.; Crosby, R.D.; Engel, S.G.; Mitchell, J.E.; Calogero, R.M. Ecological momentary assessment of affect, stress, and binge-purge behaviors: Day of week and time of day effects in the natural environment. Int. J. Eat. Disord. 2009, 42, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, D.S.; Young, S.N. Ecological momentary assessment: What it is and why it is a method of the future in clinical psychopharmacology. J. Psychiatry Neurosci. 2006, 31, 13–20. [Google Scholar]
- Shiffman, S. Ecological Momentary Assessment (EMA) in Studies of Substance Use. Psychol. Assess. 2009, 21, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Shiffman, S.; Stone, A.A.; Hufford, M.R. Ecological Momentary Assessment. Annu. Rev. Clin. Psychol. 2008, 4, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.T.; Schick, R.S.; Hallyburton, M.; Dennis, M.F.; Kollins, S.H.; Beckham, J.C.; McClernon, F.J. Combined Ecological Momentary Assessment and Global Positioning System Tracking to Assess Smoking Behavior: A Proof of Concept Study. J. Dual Diagn. 2014, 10, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Passchier-Vermeer, W.; Passchier, W.F. Noise exposure and public health. Environ. Health Perspect. 2000, 108, 123–131. [Google Scholar] [PubMed] [Green Version]
- Bureau of Transportation Statistics National Transportation Noise Map. Available online: https://www.bts.gov/geospatial/national-transportation-noise-map (accessed on 1 May 2021).
- Bureau of Transportation Statistics CONUS Road and Aviation Noise Image Service. Available online: https://hub.arcgis.com/datasets/07fd10540182495db6261317a154443e (accessed on 1 May 2021).
- Basta, L.A.; Richmond, T.S.; Wiebe, D.J. Neighborhoods, daily activities, and measuring health risks experienced in urban environments. Soc. Sci. Med. 2010, 71, 1943–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiehe, S.E.; Hoch, S.C.; Liu, G.C.; Carroll, A.E.; Wilson, J.S.; Fortenberry, J.D. Adolescent Travel Patterns: Pilot Data Indicating Distance from Home Varies by Time of Day and Day of Week. J. Adolesc. Health 2008, 42, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Tao, Y.; Kwan, M.-P.; Chai, Y. Understanding the relationships among individual-based momentary measured noise, perceived noise, and psychological stress: A geographic ecological momentary assessment (GEMA) approach. Health Place 2020, 64, 102285. [Google Scholar] [CrossRef]
- Wang, J.; Kwan, M.-P.; Chai, Y. An innovative context-based crystal-growth activity space method for environmental exposure assessment: A study using GIS and GPS trajectory data collected in Chicago. Int. J. Environ. Res. Public Health 2018, 15, 703. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Tao, Y.; Kwan, M.-P.; Chai, Y. Assessing mobility-based real-time air pollution exposure in space and time using smart sensors and GPS trajectories in Beijing. Ann. Am. Assoc. Geogr. 2020, 110, 434–448. [Google Scholar] [CrossRef]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2. 5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor. Aerosol Sci. Technol. 2020, 54, 147–159. [Google Scholar] [CrossRef]
Devices & Software | Configuration | Data Collection |
---|---|---|
Portable air pollution sensors | AirBeam (PM2.5 in the unit of µg/m3; 2000 mAh) | Air pollution data collection |
Portable noise sensors | SLM-25 (accuracy: +1.5 dB; measurement range: 30–130 dBA) | Noise data collection |
Mobile phone | ZTE A603 (GPS with A-GPS support; 16 GB memory; 2400 mAh) | Hub for GPS and air pollution data collection and storage |
Power bank (white) | Aigo E20000+ (20,000 mAh) | Provide extra battery life for the air pollution sensor |
Power bank (black) | Anker PowerCore (10,000 mAh) | Provide extra battery life for the mobile phone |
GPS Logger | Android application (installed on the mobile phone) | GPS data collection. |
TeamViewer | Android application & Desktop software (installed in the cellphone and remote monitor computers) | Remote monitoring of the data collection |
AirCasting | Android application (installed in the cellphone) | Communicating with the air pollution sensor |
Secret Space Encryptor | Android application & Desktop software (installed in the mobile phone and remote monitor computers) | Encrypting the GPS trajectory and air pollution data in the mobile phone to protect participants’ privacy |
Devices and Software | Description | Data Collection |
---|---|---|
SurveySignal | Survey distribution application | Sending out time-based EMA texts with links of the survey to participant’s mobile phone |
SurveyMonkey | Online survey tools | Collecting and management EMA survey results |
Sociodemographic Variables | Proportion | |
---|---|---|
Gender | Female | 38.7% |
Male | 61.3% | |
Race | White | 10% |
African American | 42% | |
Latino/Hispanic | 42% | |
Other | 6% | |
Education | Elementary School | 7% |
High School | 58% | |
College/University | 32% | |
Graduate School | 3% | |
Maritial Status | Married | 18% |
Others | 82% | |
Annual Income (USD) | Less than 10,000 | 58% |
10,000–24,999 | 19% | |
25,000–49,999 | 10% | |
50,000–99,999 | 10% | |
100,000 or more | 3% |
Sociodemographic Variables | Proportion | |
---|---|---|
Gender | Female | 49% |
Male | 51% | |
Employment | Employed | 77% |
Unemployed | 23% | |
Maritial Status | Married | 68% |
Others | 32% | |
Annual Income (RMB) | Less than 180,000 | 13% |
180,000–539,999 | 49% | |
540,000–101,900 | 25% | |
102,000 or more | 13% |
Mean | Std. Deviation | Std. Error Mean | Correlation | p-Value | ||
---|---|---|---|---|---|---|
Pair 1 | Home LAeq,24h | 46.81 | 7.11 | 1.22 | 0.48 | <0.01 |
GPS LAeq,24h | 51.71 | 5.20 | 0.89 | |||
Pair 2 | Home LAeq,24h | 46.81 | 7.11 | 1.22 | 0.08 | 0.64 |
Portable LAeq,24h | 61.71 | 6.59 | 1.13 | |||
Pair 3 | GPS LAeq,24h | 51.71 | 5.20 | 0.89 | 0.44 | 0.01 |
Portable LAeq,24h | 61.71 | 6.59 | 1.13 |
Paired Differences | t | df | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
Pair 1 | Home LAeq,24h &GPS LAeq,24h | −4.90 | 6.48 | 1.11 | −7.16 | −2.64 | −4.41 | 33 | <0.01 |
Pair 2 | Home LAeq,24h & Portable LAeq,24h | −14.90 | 9.28 | 1.59 | −18.14 | −11.67 | −9.36 | 33 | <0.01 |
Pair 3 | GPS LAeq,24h & Portable LAeq,24h | −10.00 | 6.37 | 1.09 | −12.22 | −7.77 | −9.15 | 33 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Kou, L.; Kwan, M.-P.; Shakespeare, R.M.; Lee, K.; Park, Y.M. An Integrated Individual Environmental Exposure Assessment System for Real-Time Mobile Sensing in Environmental Health Studies. Sensors 2021, 21, 4039. https://doi.org/10.3390/s21124039
Wang J, Kou L, Kwan M-P, Shakespeare RM, Lee K, Park YM. An Integrated Individual Environmental Exposure Assessment System for Real-Time Mobile Sensing in Environmental Health Studies. Sensors. 2021; 21(12):4039. https://doi.org/10.3390/s21124039
Chicago/Turabian StyleWang, Jue, Lirong Kou, Mei-Po Kwan, Rebecca Marie Shakespeare, Kangjae Lee, and Yoo Min Park. 2021. "An Integrated Individual Environmental Exposure Assessment System for Real-Time Mobile Sensing in Environmental Health Studies" Sensors 21, no. 12: 4039. https://doi.org/10.3390/s21124039
APA StyleWang, J., Kou, L., Kwan, M.-P., Shakespeare, R. M., Lee, K., & Park, Y. M. (2021). An Integrated Individual Environmental Exposure Assessment System for Real-Time Mobile Sensing in Environmental Health Studies. Sensors, 21(12), 4039. https://doi.org/10.3390/s21124039