Deep Learning Approach for Vibration Signals Applications
Abstract
:1. Introduction
2. Theoretical Background
2.1. Convolutional Neural Network (CNN)
2.2. Short-Time Fourier Transform (STFT)
2.3. Particle Swarm Optimization (PSO)
3. Machining Roughness Estimation Application
3.1. Optimization of Model Structure
Optimization Procedure
3.2. Surface Roughness Estimation Using CNN
4. Fault Diagnosis Applications
4.1. Classification of CWRU Bearing Data
- (a)
- Bearing Faults Classification Using Vibration Signals
- (b)
- Bearing Faults Classification Using STFT Time-Frequency Spectra
4.2. Classification of Tool Wear Using STFT Time-Frequency Spectra
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, G.; Umapathy, K.; Krishnan, S. Trends in audio signal feature extraction methods. Appl. Acoust. 2020, 158, 107020. [Google Scholar] [CrossRef]
- García Plaza, E.; Núñez López, P.J.; Beamud González, E.M. Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining. J. Manuf. Process. 2019, 44, 145–157. [Google Scholar] [CrossRef]
- He, G.; Ding, K.; Lin, H. Fault feature extraction of rolling element bearings using sparse representation. J. Sound Vib. 2016, 366, 514–527. [Google Scholar] [CrossRef]
- Xiao, R.; Hu, Q.; Li, J. Leak detection of gas pipelines using acoustic signals based on wavelet transform and Support Vector Machine. Measurement 2019, 146, 479–489. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, S.; Chunhui, E.; Gong, M.; Li, B.; Wen, B. Crack fault diagnosis of rotor systems using wavelet transforms. Comput. Electr. Eng. 2015, 45, 33–41. [Google Scholar] [CrossRef]
- Lambrou, T.; Kudumakis, P.; Speller, R.; Sandler, M.; Linney, A. Classification of audio signals using statistical features on time and wavelet transform domains. Acoust. Speech Signal Process. 1988, 6, 3621–3624. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Oppenheim, A.V. Applications of Digital Signal Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1978. [Google Scholar]
- Dolenc, B.; Boškoski, P.; Juričić, Đ. Distributed bearing fault diagnosis based on vibration analysis. Mech. Syst. Signal Process. 2016, 66–67, 521–532. [Google Scholar] [CrossRef]
- Al-Salman, W.; Li, Y.; Wen, P. K-complexes Detection in EEG Signals using Fractal and Frequency Features Coupled with an Ensemble Classification Model. Neuroscience 2019, 422, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Rukhsar, S.; Khan, Y.; Farooq, O.; Sarfraz, M.; Khan, A. Patient-Specific Epileptic Seizure Prediction in Long-Term Scalp EEG Signal Using Multivariate Statistical Process Control. IRBM 2019, 40, 320–331. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W.; Jiang, D. Simulation and experimental analysis of rolling element bearing fault in rotor-bearing-casing system. Eng. Fail. Anal. 2018, 92, 205–221. [Google Scholar] [CrossRef]
- Wang, T.; Liang, M.; Li, J.; Cheng, W. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis. Mech. Syst. Signal Process. 2014, 45, 139–153. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Gao, R.X.; Chu, F. Signal optimization based generalized demodulation transform for rolling bearing nonstationary fault characteristic extraction. Mech. Syst. Signal Process. 2019, 134, 106297. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Wang, Q.; An, G.; Guo, M.; Lian, H. Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT. Mech. Syst. Signal Process. 2010, 24, 2961–2971. [Google Scholar] [CrossRef]
- Lee, W.; Ratnam, M.; Ahmad, Z. Detection of chipping in ceramic cutting inserts from workpiece profile during turning using fast Fourier transform (FFT) and continuous wavelet transform (CWT). Precis. Eng. 2017, 47, 406–423. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 2018, 313, 47–64. [Google Scholar] [CrossRef]
- Abdelkrim, C.; Meridjet, M.S.; Boutasseta, N.; Boulanouar, L. Detection and classification of bearing faults in industrial geared motors using temporal features and adaptive neuro-fuzzy inference system. Heliyon 2019, 5, e02046. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Z.; Zhou, L.; Yu, W.; Shao, Y. A statistical feature investigation of the spalling propagation assessment for a ball bearing. Mech. Mach. Theory 2019, 131, 336–350. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network. Comput. Ind. 2019, 108, 53–61. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Guo, L.; Gao, H.; Hong, X.; Song, H. A new bearing fault diagnosis method based on modified convolutional neural networks. Chin. J. Aeronaut. 2020, 33, 439–447. [Google Scholar] [CrossRef]
- Li, C.; Zhao, D.; Mu, S.; Zhang, W.; Shi, N.; Li, L. Fault diagnosis for distillation process based on CNN–DAE. Chin. J. Chem. Eng. 2019, 27, 598–604. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, J.; Zhong, Y.; Zhou, Y. Convolutional neural network-based hidden Markov models for rolling element bearing fault identification. Knowl.-Based Syst. 2018, 144, 65–76. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Z.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv. Eng. Inform. 2017, 32, 139–151. [Google Scholar] [CrossRef]
- Dong, S.; Wu, W.; He, K.; Mou, X. Rolling bearing performance degradation assessment based on improved convolutional neural network with anti-interference. Measurement 2020, 151, 107219. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Kim, J.-M. Motor Bearing Fault Diagnosis Using Deep Convolutional Neural Networks with 2D Analysis of Vibration Signal. Trans. Petri Nets Other Models Concurr. XV 2018, 10832, 144–155. [Google Scholar] [CrossRef]
- An, Q.; Tao, Z.; Xu, X.; El Mansori, M.; Chen, M. A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement 2020, 154, 107461. [Google Scholar] [CrossRef]
- Kious, M.; Ouahabi, A.; Boudraa, M.; Serra, R.; Cheknane, A. Detection process approach of tool wear in high speed milling. Measurement 2010, 43, 1439–1446. [Google Scholar] [CrossRef]
- Pandiyan, V.; Tjahjowidodo, T. Use of Acoustic Emissions to detect change in contact mechanisms caused by tool wear in abrasive belt grinding process. Wear 2019, 436–437, 203047. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J. On-line tool wear measurement for ball-end milling cutter based on machine vision. Comput. Ind. 2013, 64, 708–719. [Google Scholar] [CrossRef]
- García-Ordás, M.T.; Alegre-Gutiérrez, E.; Alaiz-Rodríguez, R.; González-Castro, V. Tool wear monitoring using an online, automatic and low cost system based on local texture. Mech. Syst. Signal Process. 2018, 112, 98–112. [Google Scholar] [CrossRef]
- Srinivasan, R.; Jacob, V.; Muniappan, A.; Madhu, S.; Sreenevasulu, M. Modeling of surface roughness in abrasive water jet machining of AZ91 magnesium alloy using Fuzzy logic and Regression analysis. Mater. Today Proc. 2020, 22, 1059–1064. [Google Scholar] [CrossRef]
- Parida, A.K.; Maity, K. Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM). Measurement 2019, 137, 375–381. [Google Scholar] [CrossRef]
- Wu, T.Y.; Lei, K.W. Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network. Int. J. Adv. Manuf. Technol. 2019, 102, 305–314. [Google Scholar] [CrossRef]
- Rao, K.V.; Murthy, B.; Rao, N.M. Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network. Measurement 2014, 51, 63–70. [Google Scholar] [CrossRef]
- Yunusa-Kaltungo, A.; Cao, R. Towards Developing an Automated Faults Characterization Framework for Rotating Machines. Part 1: Rotor-Related Faults. Energies 2020, 13, 1394. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Yunusa-Kaltungo, A. An Automated Data Fusion-Based Gear Faults Classification Framework in Rotating Machines. Sensor 2021, 21, 2957. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.P.; Das, S. Multi-sensor data fusion using support vector machine for motor fault detection. Inf. Sci. 2012, 217, 96–107. [Google Scholar] [CrossRef]
- Gunerkar, R.; Jalan, A. Classification of Ball Bearing Faults Using Vibro-Acoustic Sensor Data Fusion. Exp. Tech. 2019, 43, 635–643. [Google Scholar] [CrossRef]
- Wang, X.; Mao, D.; Li, X. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement 2021, 173, 108518. [Google Scholar] [CrossRef]
- Safizadeh, M.; Latifi, S. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf. Fusion 2014, 18, 1–8. [Google Scholar] [CrossRef]
- Luwei, K.C.; Yunusa-Kaltungo, A.; Sha’Aban, Y.A. Integrated Fault Detection Framework for Classifying Rotating Machine Faults Using Frequency Domain Data Fusion and Artificial Neural Networks. Machines 2018, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Liu, Z.; Tao, Y. Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion. Simul. Model. Pr. Theory 2020, 102, 101981. [Google Scholar] [CrossRef]
- Cabrera, D.; Sancho, F.; Li, C.; Cerrada, M.; Sánchez, R.-V.; Pacheco, F.; de Oliveira, J.V. Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation. Appl. Soft Comput. 2017, 58, 53–64. [Google Scholar] [CrossRef]
- Cintas, C.; Lucena, M.; Fuertes, J.M.; Delrieux, C.; Navarro, P.; González-José, R.; Molinos, M. Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks. J. Cult. Herit. 2019, 41, 106–112. [Google Scholar] [CrossRef]
- Hung, C.-W.; Zeng, S.-X.; Lee, C.-H.; Li, W.-T. End-to-End Deep Learning by MCU Implementation: An Intelligent Gripper for Shape Identification. Sensors 2021, 21, 891. [Google Scholar] [CrossRef]
- Chan, H.Y.; Lee, C.H. Vibration signals analysis by explainable artificial intelligence (xai) approach: Application on bearing faults diagnosis. IEEE Access 2020, 8, 134246–134256. [Google Scholar] [CrossRef]
- Lo, C.-C.; Lee, C.-H.; Huang, W.-C. Prognosis of Bearing and Gear Wears Using Convolutional Neural Network with Hybrid Loss Function. Sensors 2020, 20, 3539. [Google Scholar] [CrossRef]
- Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-C.; Chen, B.-Q.; Yao, B.; He, W.-P. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Sejdić, E.; Djurović, I.; Jiang, J. Time–frequency feature representation using energy concentration: An overview of recent advances. Digit. Signal Process. 2009, 19, 153–183. [Google Scholar] [CrossRef]
- Kenndy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Chou, F.-I.; Tsai, Y.-K.; Chen, Y.-M.; Tsai, J.-T.; Kuo, C.-C. Optimizing Parameters of Multi-Layer Convolutional Neural Network by Modeling and Optimization Method. IEEE Access 2019, 7, 68316–68330. [Google Scholar] [CrossRef]
- Fang, K.-T.; Liu, M.-Q.; Qin, H.; Zhou, Y.-D. Theory and Applications of Uniform Experimental Designs; Springer: Singapore, 2018. [Google Scholar]
- Bearing Data Center Seeded Fault Test Data. Available online: https://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures (accessed on 10 March 2019).
- Li, B.; Zhang, P.-L.; Liu, D.-S.; Mi, S.-S.; Ren, G.-Q.; Tian, H. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. J. Sound Vib. 2011, 330, 2388–2399. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Wang, X.; Wu, J.; Li, Z. An improved local mean decomposition method based on improved composite interpolation envelope and its application in bearing fault feature extraction. ISA Trans. 2020, 97, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
Layers | Filter Size | Stride | Number of Filters or Nodes | Activation Function |
---|---|---|---|---|
Conv. 1 (X, Y, Z) | (16~25) | 2 | (11~20) | ReLU |
Pool. 1 (X, Y, Z) | (11~20) | |||
Conv. 2 (X, Y, Z) | (16~25) | 2 | (11~20) | ReLU |
Pool. 2 (X, Y, Z) | (11~20) | |||
Flatten | ||||
Fully connected 1 | (10~100) | ReLU | ||
Fully connected 2 | (10~100) | ReLU | ||
Output | 1 | None |
Experiment Index | Factors | |||||
---|---|---|---|---|---|---|
1 | 1 | 3 | 2 | 3 | 4 | 3 |
2 | 4 | 4 | 3 | 2 | 4 | 2 |
3 | 2 | 3 | 3 | 3 | 3 | 2 |
4 | 1 | 2 | 1 | 4 | 4 | 2 |
5 | 2 | 2 | 3 | 1 | 2 | 3 |
6 | 1 | 4 | 1 | 1 | 1 | 3 |
7 | 3 | 1 | 3 | 4 | 2 | 1 |
8 | 3 | 3 | 3 | 1 | 1 | 4 |
9 | 1 | 2 | 3 | 2 | 1 | 1 |
10 | 3 | 4 | 2 | 2 | 2 | 3 |
11 | 4 | 2 | 4 | 2 | 3 | 3 |
12 | 2 | 1 | 1 | 3 | 1 | 3 |
13 | 4 | 1 | 3 | 4 | 4 | 3 |
14 | 2 | 4 | 4 | 1 | 4 | 1 |
15 | 1 | 1 | 4 | 3 | 2 | 2 |
16 | 3 | 1 | 1 | 2 | 1 | 2 |
17 | 3 | 2 | 1 | 1 | 3 | 4 |
18 | 4 | 3 | 4 | 1 | 2 | 2 |
19 | 1 | 3 | 4 | 4 | 3 | 4 |
20 | 4 | 4 | 1 | 3 | 3 | 4 |
21 | 4 | 2 | 2 | 3 | 2 | 4 |
22 | 4 | 3 | 2 | 4 | 1 | 1 |
23 | 3 | 2 | 4 | 3 | 4 | 1 |
24 | 2 | 3 | 1 | 2 | 2 | 1 |
25 | 2 | 1 | 2 | 2 | 4 | 4 |
26 | 1 | 1 | 2 | 1 | 3 | 1 |
27 | 3 | 4 | 2 | 4 | 3 | 2 |
28 | 2 | 4 | 4 | 4 | 1 | 4 |
Experiment Index | Parameters | Avg. Testing MAPE (%) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 16 | 17 | 14 | 17 | 100 | 70 | 60,230 | 14.35 |
2 | 25 | 20 | 17 | 14 | 100 | 40 | 44,399 | 13.57 |
3 | 19 | 17 | 17 | 17 | 70 | 40 | 49,055 | 16.00333333 |
4 | 16 | 14 | 11 | 20 | 100 | 40 | 87,362 | 18.42666667 |
5 | 19 | 14 | 17 | 11 | 40 | 70 | 30,533 | 18.3 |
6 | 16 | 20 | 11 | 11 | 10 | 70 | 8903 | 23.83333333 |
7 | 22 | 11 | 17 | 20 | 40 | 10 | 69,734 | 25.16 |
8 | 22 | 17 | 17 | 11 | 10 | 100 | 17,399 | 23.11333333 |
9 | 16 | 14 | 17 | 14 | 10 | 10 | 17,504 | 24.25666667 |
10 | 22 | 20 | 14 | 14 | 40 | 70 | 25,325 | 19.11 |
11 | 25 | 14 | 20 | 14 | 70 | 70 | 60,053 | 15.17333333 |
12 | 19 | 11 | 11 | 17 | 10 | 70 | 21,911 | 25.44 |
13 | 25 | 11 | 17 | 20 | 100 | 70 | 148,127 | 11.33666667 |
14 | 19 | 20 | 20 | 11 | 100 | 10 | 31,394 | 18.82666667 |
15 | 16 | 11 | 20 | 17 | 40 | 40 | 57,872 | 18.46333333 |
16 | 22 | 11 | 11 | 14 | 10 | 40 | 19,436 | 21.03 |
17 | 22 | 14 | 11 | 11 | 70 | 100 | 43,769 | 18.4 |
18 | 25 | 17 | 20 | 11 | 40 | 40 | 29,054 | 16.59333333 |
19 | 16 | 17 | 20 | 20 | 70 | 100 | 61,151 | 13.68333333 |
20 | 25 | 20 | 11 | 17 | 70 | 100 | 40,055 | 18.50333333 |
21 | 25 | 14 | 14 | 17 | 40 | 100 | 45,674 | 18.52333333 |
22 | 25 | 17 | 14 | 20 | 10 | 10 | 26,483 | 19.17333333 |
23 | 22 | 14 | 20 | 17 | 100 | 10 | 86,192 | 16.02333333 |
24 | 19 | 17 | 11 | 14 | 40 | 10 | 23,381 | 19.54333333 |
25 | 19 | 11 | 14 | 14 | 100 | 100 | 102,155 | 15.81 |
26 | 16 | 11 | 14 | 11 | 70 | 10 | 52,820 | 28.36333333 |
27 | 22 | 20 | 14 | 20 | 70 | 40 | 43,457 | 15.21333333 |
28 | 19 | 20 | 20 | 20 | 10 | 100 | 28,271 | 18.87666667 |
Test MAPE 1 | Test MAPE 2 | Test MAPE 3 | Avg. MAPE | Standard Deviation |
---|---|---|---|---|
15.74% | 13.97% | 13.19% | 14.3% | 1.090% |
Layer | Nodes | Activation Function | Bias |
---|---|---|---|
Input | 6 | None | None |
Hidden 1 | 12 | Sigmoid | None |
Output | 1 | None | Yes |
Total parameters | 85 |
Test MAPE 1 | Test MAPE 2 | Test MAPE 3 | Avg. MAPE | Standard Deviation |
---|---|---|---|---|
11.04% | 10.68% | 8.44% | 10.053% | 1.150% |
Weights of Updating Velocity | Range of Values | Adjustment of Weights |
---|---|---|
w | 0.1~2 | Decrease while the iteration increases. |
0.1~2 | Decrease while the iteration increases. | |
0.1~2 | Increase while the iteration increases. |
Layer | Filter Size | Stride | Number of Filters or Nodes | Activation Function |
---|---|---|---|---|
Conv. 1 | 30 | 1 | 8 | ReLU |
Pool. 1 | 4 | |||
Conv. 2 | 30 | 1 | 16 | ReLU |
Pool. 2 | 4 | |||
Conv. 3 | 30 | 1 | 32 | ReLU |
Pool. 3 | 4 | |||
Conv. 4 | 30 | 1 | 64 | ReLU |
Pool. 4 | 4 | |||
Flatten | ||||
Fully Conn. 1 | 128 | ReLU | ||
Fully Conn. 2 | 32 | ReLU | ||
Output | 4 | Softmax | ||
Total parameters | 388,488 |
Layer | Filter Size | Stride | Number of Filters or Nodes | Activation Function |
---|---|---|---|---|
Conv. 1 | 4 | ReLU | ||
Conv. 2 | 8 | ReLU | ||
Pool. 2 | ||||
Conv. 3 | 16 | ReLU | ||
Conv. 4 | 32 | ReLU | ||
Pool. 4 | ||||
Flatten | ||||
Fully Conn. 1 | 64 | ReLU | ||
Fully Conn. 2 | 32 | ReLU | ||
Output | 4 | Softmax | ||
Total parameters | 63,622 |
Layer | Filter Size | Stride | Number of Filters or Nodes | Activation Function |
---|---|---|---|---|
Conv. 1 | 4 | ReLU | ||
Conv. 2 | 8 | ReLU | ||
Pool. 2 | ||||
Conv. 3 | 16 | ReLU | ||
Conv. 4 | 32 | ReLU | ||
Pool. 4 | ||||
Flatten | ||||
Fully Conn. 1 | 64 | ReLU | ||
Fully Conn. 2 | 32 | ReLU | ||
Output | 2 | Softmax | ||
Total parameters | 28,360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Lee, C.-H. Deep Learning Approach for Vibration Signals Applications. Sensors 2021, 21, 3929. https://doi.org/10.3390/s21113929
Chen H-Y, Lee C-H. Deep Learning Approach for Vibration Signals Applications. Sensors. 2021; 21(11):3929. https://doi.org/10.3390/s21113929
Chicago/Turabian StyleChen, Han-Yun, and Ching-Hung Lee. 2021. "Deep Learning Approach for Vibration Signals Applications" Sensors 21, no. 11: 3929. https://doi.org/10.3390/s21113929
APA StyleChen, H. -Y., & Lee, C. -H. (2021). Deep Learning Approach for Vibration Signals Applications. Sensors, 21(11), 3929. https://doi.org/10.3390/s21113929