In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration
Abstract
:1. Introduction
2. Unmixing of Photoacoustic Data
2.1. Linear Mixing Model
2.2. Unmixing Strategy
3. Method
3.1. Pre-Processing
3.2. Endmember Extraction
3.2.1. GLUP Algorithm
3.2.2. VCA Algorithm
3.2.3. N-FINDR Algorithm
3.2.4. SSM-S Algorithm
3.3. Abundances Estimation
4. Materials
4.1. Acquisition System
4.2. Imaged Phantoms
4.2.1. Chromophore Dilution
4.2.2. Mixing of the Chromophores
4.3. Performance Evaluation on Phantoms
4.4. In Vivo Data Acquisitions
4.5. sO Calculation with Vevo LAZR Oxy-Hemo Mode
5. Results
5.1. Chromophore Dilution
5.2. Mixing of the Chromophores
5.3. Preliminary In Vivo Results
6. Discussion
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FCLS | Fully Constrained Least-Square |
GLUP | Group Lasso with Unit sum and Positivity constraints |
PCA | Principal Component Analysis |
SSM-S | Spatio-Spectral Mean-Shift |
VCA | Vertex Component Analysis |
References
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- van Veen, R.L.P.; Sterenborg, H.J.C.M.; Pifferi, A.; Torricelli, A.; Cubeddu, R. Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy. In Proceedings of the Biomedical Topical Meeting, Miami Beach, FL, USA, 14–17 April 2004. [Google Scholar]
- Glatz, J.; Deliolanis, N.C.; Buehler, A.; Razansky, D.; Ntziachristos, V. Blind source unmixing in multi-spectral optoacoustic tomography. Opt. Express 2011, 19, 3175–3184. [Google Scholar] [CrossRef]
- Razansky, D.; Vinegoni, C.; Ntziachristos, V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 2007, 32, 2891–2893. [Google Scholar] [CrossRef] [PubMed]
- Mienkina, M.P.; Friedrich, C.S.; Hensel, K.; Gerhardt, N.C.; Hofmann, M.R.; Schmitz, G. Evaluation of Ferucarbotran (Resovist) as a Photoacoustic Contrast Agent. Biomed. Eng. 2009, 54, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Mercep, E.; Dean-Ben, X.L.; Razansky, D. Combined pulse-echo ultrasound and multispectral optoacoustic tomography with a multi-segment detector array. IEEE Trans. Med Imaging 2017, 36, 2129–2137. [Google Scholar] [CrossRef]
- Singh, M.K.A.; Sato, N.; Ichihashi, F.; Sankai, Y. In vivo demonstration of real-time oxygen saturation imaging using a portable and affordable LED-based multispectral photoacoustic and ultrasound imaging system. In Proceedings of the SPIE 10878, Photons Plus Ultrasound: Imaging and Sensing 2019, San Francisco, CA, USA, 3–6 February 2019; Volume 0878, pp. 1–4. [Google Scholar]
- Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N. Automatic cancer tissue detection using multispectral photoacoustic imaging. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Nasiriavanaki, M.; Xia, J.; Wan, H.; Bauer, A.Q.; Culver, J.P.; Wang, L.V. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. USA 2014, 111, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzoumas, S.; Deliolanis, N.C.; Morscher, S.; Ntziachristos, V. Unmixing Molecular Agents From Absorbing Tissue in Multispectral Optoacoustic Tomography. IEEE Trans. Med Imaging 2014, 33, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Gowen, A.; O’Donnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Bermana, M.; Connorb, P.; Whitbournb, L.; Cowardb, D.; Osbornec, B.; Southanc, M. Classification of Sound and Stained Wheat Grains Using Visible and near Infrared Hyperspectral Image Analysis. J. Near Infrared Spectrosc. 2007, 15, 351–358. [Google Scholar] [CrossRef]
- Gendrin, C.; Roggo, Y.; Collet, C. Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review. J. Pharm. Biomed. Anal. 2008, 48, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Picon, A.; Ghita, O.; Whelan, P.F.; Iriondo, P.M. Fuzzy Spectral and Spatial Feature Integration for Classification of Nonferrous Materials in Hyperspectral Data. IEEE Trans. Ind. Inform. 2009, 5, 483–494. [Google Scholar] [CrossRef]
- Brewer, L.N.; Ohlhausen, J.A.; Kotula, P.G.; Michael, J.R. Forensic analysis of bioagents by X-ray and TOF-SIMS hyperspectral imaging. Forensic Sci. Int. 2008, 179, 98–106. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Ammanouil, R.; Ferrari, A.; Richard, C.; Mary, D. Blind and fully constrained unmixing of hyperspectral images. IEEE Trans. Image Process. 2014, 23, 5510–5518. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, J.M.P.; Dias, J.M.B. Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2004, 43, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Winter, M.E. N-FINDR: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data. Int. Soc. Opt. Photonics 1999, 3753, 266–276. [Google Scholar] [CrossRef]
- Heinz, D.C.; Chein-I-Chang. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Deán-Ben, X.L.; Deliolanis, N.C.; Ntziachristos, V.; Razansky, D. Fast unmixing of multispectral optoacoustic data with vertex component analysis. Opt. Lasers Eng. 2014, 58, 119–125. [Google Scholar] [CrossRef]
- Dolet, A.; Varray, F.; Mure, S.; Grenier, T.; Liu, Y.; Yuan, Z.; Tortoli, P.; Vray, D. Spatial and Spectral Regularization to Discriminate Tissues Using Multispectral Photoacoustic Imaging. EURASIP J. Adv. Signal Process. 2018, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pratt, W.K. Digital Image Processing; John Wiley & Sons: Hoboken, NJ, USA, 1978. [Google Scholar]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Scharf, L.L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 1991. [Google Scholar]
- Plaza, A.; Chein-I, C. An Improved N-FINDR Algorithm in Implementation. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, FL, USA, 28 March–1 April 2005; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5806, pp. 298–307. [Google Scholar] [CrossRef] [Green Version]
- Arthuis, C.J.; Novell, A.; Raes, F.; Escoffre, J.; Lerondel, S.; Pape, A.L.; Bouakaz, A.; Perrotin, F. Real-Time Monitoring of Placental Oxygenation during Maternal Hypoxia and Hyperoxygenation Using Photoacoustic Imaging. PLoS ONE 2017, 12, e0169850. [Google Scholar] [CrossRef] [Green Version]
- Dolet, A.; Varray, F.; Roméo, E.; Dehoux, T.; Vray, D. Spectrophotometry and Photoacoustic Imaging: A Comparative Study. IRBM 2017, 38, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Boggio, K.; Nicoletti, G.; Carlo, E.D.; Cavallo, F.; Landuzzi, L.; Melani, C.; Giovarelli, M.; Rossi, I.; Nanni, P.; Giovanni, C.D.; et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 1998, 188, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visualsonics. Oxy-Hemo Mode. 2018. Available online: https://www.visualsonics.com/product/software/oxy-hemo-mode (accessed on 1 May 2020).
- Li, C.; Wang, L.V. Photoacoustic Tomography and Sensing in Biomedicine. Phys. Med. Biol. 2009, 54, R59–R97. [Google Scholar] [CrossRef]
- Deán-Ben, X.L.; Bay, E.; Razansky, D. Functional Optoacoustic Imaging of Moving Objects Using Microsecond-Delay Acquisition of Multispectral Three-Dimensional Tomographic Data. Sci. Rep. 2014, 4, 5878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, R.; Ermilov, A.S.; Liopo, A.V.; Oraevsky, A.A. Optoacoustic 3D visualization of changes in physiological properties of mouse tissues from live to postmortem. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2012, San Francisco, CA, USA, 22–24 January 2012; pp. 14–21. [Google Scholar]
- Gehrung, M.; Bohndiek, S.E.; Brunker, J. Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry. J. Biomed. Opt. 2019, 24, 121908. [Google Scholar] [CrossRef]
- Gröhl, J.; Kirchner, T.; Adler, T.J.; Hacker, L.; Holzwarth, N.; Hernández-Aguilera, A.; Herrera, M.A.; Santos, E.; Bohndiek, S.E.; Maier-Hein, L. Learned spectral decoloring enables photoacoustic oximetry. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
Endmember Extraction | Whole Image | Limited to Tumor |
---|---|---|
GLUP | ||
VCA | ||
N-FINDR | ||
SSM-S | ||
Theoretical spectra | 21.52% | 13.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolet, A.; Ammanouil, R.; Petrilli, V.; Richard, C.; Tortoli, P.; Vray, D.; Varray, F. In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration. Sensors 2021, 21, 3366. https://doi.org/10.3390/s21103366
Dolet A, Ammanouil R, Petrilli V, Richard C, Tortoli P, Vray D, Varray F. In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration. Sensors. 2021; 21(10):3366. https://doi.org/10.3390/s21103366
Chicago/Turabian StyleDolet, Aneline, Rita Ammanouil, Virginie Petrilli, Cédric Richard, Piero Tortoli, Didier Vray, and François Varray. 2021. "In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration" Sensors 21, no. 10: 3366. https://doi.org/10.3390/s21103366
APA StyleDolet, A., Ammanouil, R., Petrilli, V., Richard, C., Tortoli, P., Vray, D., & Varray, F. (2021). In Vitro and In Vivo Multispectral Photoacoustic Imaging for the Evaluation of Chromophore Concentration. Sensors, 21(10), 3366. https://doi.org/10.3390/s21103366