Spatial-Variant SAR Range Cell Migration Correction Using Subaperture Strategy
Abstract
:1. Introduction
2. Method
3. Range Cell Migration Analysis for Highly Squinted SAR
3.1. Geometric Model
3.2. Range Walk Correction
3.3. Coarse RCMC and Error Analysis
4. Fine Rcmc for SA Processing
4.1. Residual Fine RCMC
4.2. SA Length Analysis
4.3. Computational Burden Analysis
5. Experiments
5.1. Simulated Data
5.2. Real Measured Data
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ran, L.; Xie, R.; Liu, Z.; Zhang, L.; Li, T.; Wang, J. Simultaneous Range and Cross-Range Variant Phase Error Estimation and Compensation for Highly Squinted SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4448–4463. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, L.; Xie, P.; Meng, Z.; Cao, Y. High-resolution imaging of multi-channel forward-looking synthetic aperture radar under curve trajectory. IEEE Access 2019, 7, 51211–51221. [Google Scholar] [CrossRef]
- Zhang, S.; Sheng, J.; Xing, M. A novel focus approach for squint mode multi-channel in azimuth high-resolution and wide-swath SAR imaging processing. IEEE Access 2018, 6, 74303–74319. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, Z.; Yang, L.; Xing, M.; Bao, Z. A robust motion compensation approach for UAV SAR imagery. IEEE Trans. Geosci. Remot Sens. 2012, 50, 3202–3218. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Huang, Y.; Zhang, L.; Wang, F. Robust two-dimensional spatial-variant map-drift algorithm for UAV SAR autofocusing. Remote Sens. 2019, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhao, L.; Zhou, S.; Bi, G.; Yang, H. Spectrum-oriented FFBP algorithm in quasi-polar grid for SAR imaging on maneuvering platform. IEEE Geosci. Remote Sens. Lett. 2017, 14, 724–728. [Google Scholar] [CrossRef]
- Bie, B.; Xing, M.; Xia, X.; Sun, G.; Liang, Y.; Jing, G.; Wei, T.; Yu, Y. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7086–7101. [Google Scholar] [CrossRef]
- Bie, B.; Sun, G.; Xing, M. Space-variant RCMC method for squint beam-steering SAR imaging on high-speed manoeuvring platforms. Electron. Lett. 2019, 55, 481–483. [Google Scholar] [CrossRef]
- Ulander, L.M.H.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, H.; Qiao, Z.; Xu, Z. A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1460–1464. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G.; Zhang, L. Precise aperture-dependent motion compensation with frequency domain fast back-projection algorithm. Sensors 2017, 17, 2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cafforio, C.; Prati, C.; Rocca, F. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 194–207. [Google Scholar] [CrossRef]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Reigber, A.; Alivizatos, E.; Potsis, A.; Moreira, A. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc.-Radar Sonar Navig. 2006, 153, 301–310. [Google Scholar] [CrossRef]
- Davidson, G.W.; Cumming, I. Signal properties of spaceborne squintmode SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.H.; Yeo, T.S. New application of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 946–953. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Xia, X.; Zhang, L.; Guo, R.; Bao, Z. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction. IEEE Geosci. Remote Sens. Lett. 2013, 10, 150–155. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, J.; Li, Z.; Huang, Y.; Yang, J. Highly squint SAR data focusing based on Keystone transform and azimuth extended nonlinear chirp scaling. IEEE Geosci. Remote Sens. Lett. 2015, 12, 145–149. [Google Scholar]
- Li, D.; Lin, H.; Liu, H.; Wu, H.; Tan, X. Focus improvement for squint FMCW-SAR data using modified inverse Chirp-Z transform based on spatial-variant linear range cell migration correction and series inversion. IEEE Sensors J. 2016, 6, 2564–2574. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, Y.; Chang, Y.; Liu, E.; Tang, X.; Zhang, J. Focus high-resolution highly squint SAR data using azimuth-variant residual RCMC and extended nonlinear chirp scaling based on a new circle model. IEEE Geosci. Remote Sens. Lett. 2018, 5, 547–551. [Google Scholar] [CrossRef]
- Li, D.; Lin, H.; Liu, H.; Liao, G.; Tan, X. Focus improvement for high resolution highly squinted SAR imaging based on 2-D spatial-variant linear and quadratic RCMs correction and azimuth-dependent Doppler equalization. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2017, 10, 168–183. [Google Scholar] [CrossRef]
- An, D.; Huang, X.; Jin, T.; Zhou, Z. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3595–3609. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Qiao, Z.; Wang, H.; Sun, L. Two-stage focusing algorithm for highly squinted synthetic aperture radar imaging. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5547–5562. [Google Scholar] [CrossRef]
- Sun, X.; Yeo, T.S.; Zhang, C.; Lu, Y.; Kooi, P.S. Time-varying step transform for high squint SAR imaging. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2668–2677. [Google Scholar]
- Yeo, T.S.; Tan, N.L.; Zhang, C.B.; Lu, Y.H. A new subaperture approach to high squint SAR processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 22–36. [Google Scholar]
- Li, W.; Wang, J. A new improved step transform algorithm for highly squint SAR imaging. IEEE Geosci. Remote Sens. Lett. 2011, 8, 118–122. [Google Scholar]
- Tang, Y.; Zhang, B.; Xing, M.; Bao, Z.; Guo, L. Azimuth overlapped subaperture algorithm in frequency domain for highly squinted synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 692–696. [Google Scholar] [CrossRef]
- Zeng, T.; Li, Y.; Ding, Z.; Long, T.; Yao, D.; Sun, Y. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR. IEEE Trans. Geosci. Remote Sens. 2005, 53, 6718–6734. [Google Scholar] [CrossRef]
- Cumming, I.; Wong, F. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Neo, Y.L.; Wong, F.; Cumming, I.G. A two-dimensional spectra for bistatic SAR processing using series reversion. IEEE Geosci. Remote Sens. Lett. 2007, 4, 93–96. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Hu, Q. A novel range cell migration correction algorithm for highly squinted SAR imaging. In Proceedings of the 2016 CIE International Conference on Radar, Guangzhou, China, 10–13 October 2016. [Google Scholar]
- Wang, G.; Zhang, L.; Li, J.; Hu, Q. Precise aperture-dependent motion compensation for high-resolution synthetic aperture radar imaging. IET Radar Sonar Navig. 2017, 11, 204–211. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Working band | X-band |
Center closest slant range | 1 km |
Squint angle | 45 degrees |
Range resolution | 0.15 m |
Azimuth resolution | 0.15 m |
Point A coordinate | (1000, 75) |
Point B coordinate | (1200, 0) |
Point C coordinate | (800, 0) |
Target Point | Approach | PSLR (dB) | ISLR (dB) | IRW (m) | PVR (dB) |
---|---|---|---|---|---|
A | CSA + ANLCS | −13.03 | −9.43 | 0.22 | −0.94 |
A | Proposal + ANLCS | −13.14 | −10.14 | 0.16 | 0 |
B | CSA + ANLCS | −13.10 | −9.31 | 0.191 | −1.14 |
B | Proposal + ANLCS | −13.35 | −10.03 | 0.16 | 0 |
C | CSA + ANLCS | −12.40 | −10.10 | 0.217 | −1.94 |
C | Proposal + ANLCS | −13.03 | −11.40 | 0.16 | 0 |
Parameter | Value |
---|---|
Working band | Ka-band |
Center closest slant range | 4 km |
Velocity | 70 m/s |
Squint angle | 40 degrees |
Range resolution | 0.2 m |
Azimuth resolution | 0.2 m |
Scatter Point | Approach | PSLR (dB) | ISLR (dB) | IRW (m) | PVR (dB) |
---|---|---|---|---|---|
A | CSA + ANLCS | −3.05 | −2.48 | 0.30 | −2.00 |
A | Proposal + ANLCS | −10.75 | −8.82 | 0.18 | 0 |
B | CSA + ANLCS | −3.28 | −2.04 | 0.23 | −2.87 |
B | Proposal + ANLCS | −13.33 | −12.87 | 0.16 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Wang, G.; Hou, L. Spatial-Variant SAR Range Cell Migration Correction Using Subaperture Strategy. Sensors 2021, 21, 2444. https://doi.org/10.3390/s21072444
Hu L, Wang G, Hou L. Spatial-Variant SAR Range Cell Migration Correction Using Subaperture Strategy. Sensors. 2021; 21(7):2444. https://doi.org/10.3390/s21072444
Chicago/Turabian StyleHu, Liping, Guanyong Wang, and Lin Hou. 2021. "Spatial-Variant SAR Range Cell Migration Correction Using Subaperture Strategy" Sensors 21, no. 7: 2444. https://doi.org/10.3390/s21072444
APA StyleHu, L., Wang, G., & Hou, L. (2021). Spatial-Variant SAR Range Cell Migration Correction Using Subaperture Strategy. Sensors, 21(7), 2444. https://doi.org/10.3390/s21072444