Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network
Abstract
:1. Introduction
2. Related Work
3. Proposed Self-Attention Modules
3.1. X-Attention Module
3.2. A Variant of the X-Attention Module (Y-Attention Module)
4. Results and Discussion
4.1. Datasets and Deep Neural Network Architecture
4.2. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.C.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 557, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hou, Z.; Chen, C.; Hao, Z.; An, Y.; Liang, S.; Lu, B. Automatic cardiothoracic ratio calculation with deep learning. IEEE Access 2019, 7, 37749–37756. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Saad, M.N.; Muda, Z.; Ashaari, N.S.; Hamid, H.A. Image segmentation for lung region in chest X-ray images using edge detection and morphology. In Proceedings of the 2014 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 28–30 November 2014; pp. 46–51. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Gaal, G.; Maga, B.; Lukacs, A. Attention U-Net based adversarial architectures for chest X-ray lung segmentation. arXiv 2020, arXiv:2002.10304. [Google Scholar]
- Dai, W.; Doyle, J.; Liang, X.; Zhang, H.; Dong, N.; Li, Y.; Xing, E.P. SCAN: Structure correcting adversarial network for organ segmentation in chest X-rays. arXiv 2017, arXiv:1703.08770. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Tang, Y.; Tang, Y.; Xiao, J.; Summers, R.M. XLSor: A robust and accurate lung segmentor on chest X-rays using criss-cross attention and customized radiorealistic abnormalities generation. arXiv 2019, arXiv:1904.09229. [Google Scholar]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. In Proceedings of the British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; pp. 285–298. [Google Scholar]
- Yu, Q.; Xie, L.; Wang, Y.; Zhou, Y.; Fishman, E.K.; Yuille, A.L. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Tuberculosis Chest X-ray Image Data Sets. Available online: https://lhncbc.nlm.nih.gov/publication/pub9931 (accessed on 21 August 2020).
- Digital Image Database. Available online: http://db.jsrt.or.jp/eng.php (accessed on 21 August 2020).
- Open Access Biomedical Image Search Engine. Available online: http://archive.nlm.nih.gov/repos/chestImages.php (accessed on 7 December 2020).
- Stirenko, S.; Kochura, Y.; Alienin, O.; Rokovyi, O.; Gang, P.; Zeng, W.; Gordienko, Y. Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In Proceedings of the IEEE 38th International Conference on Electronics and Nanotechnology, Kiev, Ukraine, 24–26 April 2018. [Google Scholar]
Configurations | Datasets | ||
---|---|---|---|
Montgomery | JSRT | Shenzhen | |
0.967 ± 0.002 | 0.959 ± 0.003 | 0.950 ± 0.001 | |
0.967 ± 0.002 | 0.957 ± 0.002 | 0.949 ± 0.001 | |
0.964 ± 0.002 | 0.956 ± 0.002 | 0.947 ± 0.002 | |
0.962 ± 0.001 | 0.954 ± 0.001 | 0.947 ± 0.003 | |
0.964 ± 0.002 | 0.962 ± 0.002 | 0.950 ± 0.003 | |
0.960 ± 0.004 | 0.960 ± 0.002 | 0.947 ± 0.002 | |
0.959 ± 0.005 | 0.958 ± 0.002 | 0.947 ± 0.002 | |
0.957 ± 0.002 | 0.957 ± 0.008 | 0.947 ± 0.002 | |
0.970 ± 0.002 | 0.967 ± 0.001 | 0.950 ± 0.001 | |
0.965 ± 0.001 | 0.966 ± 0.001 | 0.947 ± 0.003 | |
0.970 ± 0.002 | 0.964 ± 0.003 | 0.947 ± 0.003 | |
0.969 ± 0.002 | 0.966 ± 0.003 | 0.951 ± 0.001 | |
0.966 ± 0.002 | 0.964 ± 0.003 | 0.947 ± 0.001 | |
0.968 ± 0.001 | 0.962 ± 0.001 | 0.950 ± 0.001 | |
0.982 ± 0.002 | 0.968 ± 0.002 | 0.954 ± 0.002 | |
0.972 ± 0.005 | 0.965 ± 0.001 | 0.949 ± 0.001 |
Configurations | Datasets | ||
---|---|---|---|
Montgomery | JSRT | Shenzhen | |
0.971 ± 0.001 | 0.961 ± 0.001 | 0.949 ± 0.001 | |
0.969 ± 0.001 | 0.960 ± 0.001 | 0.948 ± 0.001 | |
0.966 ± 0.002 | 0.959 ± 0.001 | 0.948 ± 0.001 | |
0.986 ± 0.001 | 0.958 ± 0.002 | 0.947 ± 0.001 | |
0.968 ± 0.001 | 0.959 ± 0.001 | 0.949 ± 0.001 | |
0.968 ± 0.001 | 0.959 ± 0.001 | 0.949 ± 0.001 | |
0.967 ± 0.001 | 0.959 ± 0.001 | 0.947 ± 0.001 | |
0.964 ± 0.002 | 0.958 ± 0.001 | 0.946 ± 0.001 | |
0.969 ± 0.002 | 0.960 ± 0.001 | 0.948 ± 0.001 | |
0.966 ± 0.001 | 0.959 ± 0.001 | 0.947 ± 0.001 | |
0.969 ± 0.002 | 0.961 ± 0.002 | 0.947 ± 0.001 | |
0.971 ± 0.001 | 0.962 ± 0.001 | 0.949 ± 0.001 | |
0.966 ± 0.002 | 0.958 ± 0.001 | 0.948 ± 0.001 | |
0.969 ± 0.002 | 0.959 ± 0.001 | 0.949 ± 0.001 | |
0.973 ± 0.001 | 0.963 ± 0.001 | 0.952 ± 0.001 | |
0.969 ± 0.001 | 0.959 ± 0.001 | 0.949 ± 0.001 |
Configurations | Datasets | ||
---|---|---|---|
Montgomery | JSRT | Shenzhen | |
0.971 ± 0.001 | 0.966 ± 0.001 | 0.956 ± 0.001 | |
0.969 ± 0.001 | 0.965 ± 0.001 | 0.955 ± 0.001 | |
0.965 ± 0.001 | 0.964 ± 0.001 | 0.955 ± 0.001 | |
0.965 ± 0.002 | 0.965 ± 0.001 | 0.954 ± 0.001 | |
0.969 ± 0.001 | 0.965 ± 0.001 | 0.954 ± 0.002 | |
0.967 ± 0.001 | 0.966 ± 0.001 | 0.954 ± 0.001 | |
0.965 ± 0.001 | 0.965 ± 0.001 | 0.953 ± 0.001 | |
0.965 ± 0.001 | 0.965 ± 0.001 | 0.952 ± 0.001 | |
0.970 ± 0.001 | 0.968 ± 0.001 | 0.956 ± 0.001 | |
0.969 ± 0.001 | 0.966 ± 0.001 | 0.956 ± 0.001 | |
0.968 ± 0.001 | 0.966 ± 0.001 | 0.953 ± 0.001 | |
0.970 ± 0.001 | 0.966 ± 0.001 | 0.956 ± 0.001 | |
0.968 ± 0.001 | 0.965 ± 0.001 | 0.958 ± 0.003 | |
0.969 ± 0.001 | 0.966 ± 0.001 | 0.956 ± 0.001 | |
0.974 ± 0.001 | 0.971 ± 0.001 | 0.960 ± 0.001 | |
0.967 ± 0.001 | 0.967 ± 0.001 | 0.956 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, B.-D. Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network. Sensors 2021, 21, 369. https://doi.org/10.3390/s21020369
Kim M, Lee B-D. Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network. Sensors. 2021; 21(2):369. https://doi.org/10.3390/s21020369
Chicago/Turabian StyleKim, Minki, and Byoung-Dai Lee. 2021. "Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network" Sensors 21, no. 2: 369. https://doi.org/10.3390/s21020369
APA StyleKim, M., & Lee, B.-D. (2021). Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network. Sensors, 21(2), 369. https://doi.org/10.3390/s21020369