Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR
Abstract
:1. Introduction
1.1. Radio Waves Propagation in the Ionosphere
1.2. Pulsars as the Probing Signal Sources
2. Observations
2.1. The LOFAR Telescope
2.2. LOFAR Signal Processing
2.3. Targets
Name | Right Ascension [h:m:s] | Declination [d:m:s] | Period [s] | Dispersion Measure [pc cm−3] | Distance [kpc] | Flux Density 2 [mJy] |
---|---|---|---|---|---|---|
J0332+5434 | 03:32:59.368 | +54:34:43.57 | 0.714519699726 | 26.7641 | 1.18 | ~900 ± 15% |
J1509+5531 | 15:09:25.6298 | +55:31:32.394 | 0.739681922904 | 19.6191 | 2.07 | ~800 ±15% |
2.4. The Rate Of TEC from GNSS Observations
2.5. Simultaneous Observations of Pulsars and ROT Towards Them
3. Results
3.1. Ionospheric Scintillations Observed with LOFAR PL612 Station
3.2. The Pulsar’s Profile Flux vs. ROT Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global Navigation Satellite Systems |
LOFAR | Low Frequency Array (www.astron.nl/telescopes/lofar) |
POLFAR | Polish LOFAR Consortium |
LOFAR4SW | LOFAR for Space Weather |
EU | European Union |
HBA | High Band Antennas |
LBA | Low Band Antennas |
ILT | International LOFAR Telescope |
VLBI | Very Large Baseline Interferometry |
TEC | Total Electron Content |
EISCAT | European Incoherent Scatter Scientific Association |
RO | Radio Occultation |
TID | Travelling Ionosphere Disturbances |
ISM | Interstellar Medium |
RM | Rotation Measure |
DM | Dispersion Measure |
SNR | Supernova Remnant |
S/N | Signal to Noise ratio |
DSPSR | The Digital Signal Processing for Pulsars package (http://dspsr.sourceforge.net/) |
AGW | Atmospheric Gravity Waves |
STEC | Slant Total Electron Content |
IGS | International GNSS Service |
ROT | Rate of TEC |
ROTI | Rate of TEC Index |
IPP | Ionospheric Pierce Point |
GPS | Global Positioning System |
GLONASS | GLObal NAvigation Satellite System |
FORMSAT | Formosa Satellite Mission |
COSMIC | Constellation Observing System for Meteorology, Ionosphere, and Climate |
References
- Jansky, K.G. Radio Waves from Outside the Solar System. Nature 1933, 132, 66. [Google Scholar] [CrossRef]
- Wilson, T.L.; Rohlfs, K.; Huttemeister, S. Tools of Radio Astronomy, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Rickett, B.J. Radio propagation through the turbulent interstellar plasma. Annu. Rev. Astron. Astrophys. 1990, 28, 561. [Google Scholar] [CrossRef]
- Rickett, B.J. Interstellar scintillation: Observational highlights. Astron. Astrophys. Trans. 2007, 26, 429–439. [Google Scholar] [CrossRef]
- Gaussiran, T.L.; Bust, G.S.; Garner, T.W. LOFAR as an ionospheric probe. Planet. Space Sci. 2004, 52, 1375–1380. [Google Scholar] [CrossRef]
- Fallows, R.A.; Forte, B.; Astin, I.; Allbrook, T.; Arnold, A.; Wood, A.G.; Dorrian, G.D.; Mevius, M.; Rothkaehl, H.; Matyjasiak, B.; et al. A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances. J. Space Weather. Space Clim. 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Fallows, R.A.; Coles, W.A.; McKay-Bukowski, D.; Vierinen, J.; VirtaneniD, I.I.; Postila, M.; Ulich, T.; Enell, C.; Kero, A.; Iinatti, T.; et al. Broadband meter-wavelength observations of ionospheric scintillation. J. Geophys. Res. Space Phys. 2014, 119, 10544. [Google Scholar] [CrossRef] [Green Version]
- Fallows, R.A.; Bisi, M.M.; Forte, B.; Ulich, T.; Konovalenko, A.A.; Mann, G.; Vocks, C. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR. Astrophys. J. Lett. 2016, 828, L7. [Google Scholar] [CrossRef] [Green Version]
- De Gasperin, F.; Mevius, M.; Rafferty, D.A.; Intema, H.T.; Fallows, R.A. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. Astron. Astrophys. 2018, 615, A179. [Google Scholar] [CrossRef]
- Hunsucker, R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys. Space Phys. 1982, 20, 293–315. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity wavesand travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, 14, 917–940. [Google Scholar]
- Valladares, C.E.; Villalobos, J.; Hei, M.A.; Sheehan, R.; Basu, S.; MacKenzie, E.; Doherty, P.H.; Rios, V.H. Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres. Ann. Geophys. 2009, 27, 1501–1508. [Google Scholar] [CrossRef]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a rapidly pulsating radio source. Nature 1968, 217, 709. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2005; ISBN 0521828236. [Google Scholar]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs and Neutron Stars. In The Physics of Compact Objects; Wiley-Interscience: New York, NY, USA, 1983. [Google Scholar]
- Pines, D.; Alpar, M.A. Superfluidity in neutron stars. Nature 1985, 316, 27. [Google Scholar] [CrossRef]
- Goldreich, P.; Julian, W.H. Pulsar Electrodynamics. Astrophys. J. 1969, 157, 869. [Google Scholar] [CrossRef]
- Gil, J.; Melikidze, G.; Geppert, U. Drifting subpulses and inner accelerationregions in radio pulsars. Astron. Astrophys. 2003, 407, 315. [Google Scholar] [CrossRef] [Green Version]
- Melikidze, G.I.; Mitra, D.; Gil, J. On the Adiabatic Walking of Plasma Waves in a Pulsar Magnetosphere. Astrophys. J. 2014, 794, 10. [Google Scholar] [CrossRef] [Green Version]
- Szary, A.; Melikidze, G.I.; Gil, J. Two modes of partially screened gap. Mon. Not. R. Astron. Soc. 2015, 447, 2295. [Google Scholar] [CrossRef] [Green Version]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. 1975, 195, L51. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar] [CrossRef]
- Cordes, J.M.; Lazio, T.J.W. NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations. arXiv 2002, arXiv:astro-ph/0207156. [Google Scholar]
- Lewandowski, W.; Dembska, M.; Kijak, J.; Kowalińska, M. Pulse broadening analysis for several new pulsars and anomalous scattering. Mon. Not. R. Astron. Soc. 2013, 434, 69. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, W.; Kijak, J.; Gupta, Y.; Krzeszowski, K. Diffractive and refractive timescales at 4.8 GHz in PSR B0329+54. Astron. Astrophys. 2011, 534, A66. [Google Scholar] [CrossRef]
- Han, J.L. The Large-Scale Magnetic Field Structure of Our Galaxy: Efficiently Deduced from Pulsar Rotation Measures. In The Magnetized Interstellar Medium; Uyaniker, B., Reich, W., Wielebinski, R., Eds.; Copernicus GmbH, Katlenburg-Lindau: Katlenburg-Lindau, Germany, 2004; pp. 3–12. [Google Scholar]
- De Vos, M.; Gunst, A.W.; Nijboer, R. The LOFAR Telescope: System Architecture and Signal Processing. Proc. IEEE 2009, 97, 1431–1437. [Google Scholar] [CrossRef]
- Van Haarlem, M.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.T.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef] [Green Version]
- Błaszkiewicz, L.; Lewandowski, W.; Krankowski, A.; Kijak, J.; Koralewska, O.; Dąbrowski, B.P. Prospects for Scrutiny of Pulsars with Polish Part of LOFAR. Acta Geophys. 2016, 64, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowski, B.; Krankowski, A.; Błaszkiewicz, L.; Rothkaehl, H. Prospects for space weather research with the Polish part of the LOFAR telescope. Acta Geophys. 2016, 64, 825–840. [Google Scholar] [CrossRef]
- Błaszkiewicz, L.; Lewandowski, W.; Krankowski, A.; Kijak, J.; Froń, A.; Sidorowicz, T.; Dąbrowski, B.P.; Kotulak, K.; Hajduk, M. PL612 LOFAR station sensitivity measurements in the context ofits application for pulsar observations. Adv. Space Res. 2018, 62, 1904–1917. [Google Scholar] [CrossRef]
- McKay-Bukowski, D.; Vierinen, J.; Virtanen, I.I.; Fallows, R.; Postila, M.; Ulich, T.; Wucknitz, O.; Brentjens, M.; Ebbendorf, N.; Enell, C.F.; et al. KAIRA: The Kilpisjärvi Atmospheric Imaging Receiver Array—System Overview and First Results. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1440–1451. [Google Scholar] [CrossRef]
- Van Straten, W.; Bailes, M. DSPSR: Digital Signal Processing Software for Pulsar Astronomy. Publ. Astron. Soc. Aust. 2011, 28, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hotan, A.W.; van Straten, W.; Manchester, R.N. PSRCHIVE and PSRFITS: An open approach to radio pulsar data storage and analysis. Publ. Astronom. Soc. Australia 2006, 21, 302. [Google Scholar] [CrossRef] [Green Version]
- Bilous, A.V.; Kondratiev, V.I.; Kramer, M.; Keane, E.F.; Hessels, J.W.T.; Stappers, B.W.; Malofeev, V.M.; Sobey, C.; Breton, R.P.; Cooper, S.; et al. A LOFAR census of non-recycled pulsars: Average profiles, dispersion measures, flux densities, and spectra. Astron. Astrophys. 2016, 591, 134. [Google Scholar] [CrossRef] [Green Version]
- Esamdin, A.; Zhou, A.Z.; Wu, X.J. A study of the long-term flux density variations of PSRs B0329+54 and B1508+55. Astron. Astrophys. 2004, 425, 949. [Google Scholar] [CrossRef]
- Cole, T.W.; Pilkington, J.D.H. Search for Pulsating Radio Sources in the Declination Range + 44 < δ < + 90. Nature 1968, 219, 574. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Yates, J.A.; Lyne, A.G.; Gould, D.M. Multifrequency Flux density measurements of 280 pulsars. Mon. Not. R. Astron. Soc. 1995, 273, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.M.; Manchester, R.N.; Wang, N. A New Electron-density Model for Estimation of Pulsar and FRB Distances. Astrophys. J. 2017, 835, 29. [Google Scholar] [CrossRef] [Green Version]
- Mitra, D.; Rankin, J.M.; Gupta, Y. Absolute broad-band polarization behaviour of PSR B0329+54: A glimpse of the core emission process. Mon. Not. R. Astron. Soc. 2007, 379, 932–944. [Google Scholar] [CrossRef]
- Konacki, M.; Lewandowski, W.; Wolszczan, A.; Doroshenko, O.; Kramer, M. Are There Planets around the Pulsar PSR B0329 + 54? Astrophys. J. 1999, 519, L81–L84. [Google Scholar] [CrossRef] [Green Version]
- Maron, O.; Kijak, J.; Kramer, M.; Wielebinski, R. Pulsar spectra of radio emission. Astron. Astrophys. Suppl. Ser. 2000, 147, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Karastergiou, A.; Gupta, Y.; Johnston, S.; Bhat, N.D.R.; Lyne, A.G. Simultaneous single-pulse observations of radio pulsars. IV. Flux density spectra of individual pulses. Astron. Astrophys. 2003, 407, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Stovall, K.; Ray, P.S.; Blythe, J.; Dowell, J.; Eftekhari, T.; Garcia, A.; Lazio, T.J.W.; McCrackan, M.; Schinzel, F.K.; Taylor, G.B. Pulsar Observations Using the First Station of the Long Wavelength Array and the LWA Pulsar Data Archive. Astrophys. J. 2015, 808, 156. [Google Scholar] [CrossRef]
- Naidu, A.; Joshi, B.C.; Manoharan, P.K.; Krishnakumar, M.A. Simultaneous multi-frequency single pulse observations of pulsars. Astron. Astrophys. 2017, 604, A45. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Vlemmings, W.H.T.; Brisken, W.F.; Lazio, T.J.W.; Cordes, J.M.; Goss, W.M.; Thorsett, S.E.; Fomalont, E.B.; Lyne, A.G.; Kramer, M. Getting Its Kicks: A VLBA Parallax for the Hyperfast Pulsar B1508 + 55. Astrophys. J. 2005, 630, L61–L64. [Google Scholar] [CrossRef]
- Taylor, J.H.; Manchester, R.N.; Lyne, A.G. Catalog of 558 pulsars. Astrophys. J. Suppl. Ser. 1993, 88, 529. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the worlwide GPS network. Geophys. Res. Lett. 1997, 24, 2283. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Astafyeva, E.; Cherniak, I. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth Planet Space 2016, 68, 120. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 2014, 49, 653–662. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solut. 2018, 22, 69. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I.; Sokolovsky, S. Multi-instrumental observation of storm-induced ionospheric plasma bubbles at equatorial and middle latitudes. J. Geophys. Res. Space Phys. 2019, 124, 1491–1508. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Astafyeva, E.; Cherniak, I. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2016, 121, 12,138–12,156. [Google Scholar] [CrossRef]
- Hirsch, M.; Pavlick, R.; Marks, S.; Philippe Riviere, P. Scivision/Pymap3d: Enhance CI Integration, Modularize; CERN European Organization for Nuclear Research: Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- Jacobsen, K.S. The impact of different sampling rates and calculation time intervals on ROTI values. J. Space Weather. Space Clim. 2014, 4, A33. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, I.; Zakharenkova, I.; Krankowski, A. Approaches for Modeling Ionosphere Irregularities Based on the TEC Rate Index. Earth Planets Space 2014, 66, 1–5. [Google Scholar] [CrossRef]
- Prikryl, P.; Jayachandran, P.T.; Chadwick, R.; Kelly, T. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann. Geophys. 2015, 33, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Kotulak, K.; Zakharenkova, I.; Krankowski, A.; Cherniak, I.; Wang, N.; Fron, A. Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI. Remote Sens. 2020, 12, 2634. [Google Scholar] [CrossRef]
- Stappers, B.W.; Hessels, J.W.T.; Alexov, A.; Anderson, K.; Coenen, T.; Hassall, T.; Karastergiou, A.; Kondratiev, V.I.; Kramer, M.; van Leeuwen, J.; et al. Observing pulsars and fast transients with LOFAR. Astron. Astrophys. 2011, 530, 80. [Google Scholar] [CrossRef]
- Noutsos, A.; Sobey, C.; Kondratiev, V.I.; Weltevrede, P.; Verbiest, J.P.W.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.P.; et al. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astron. Astrophys. 2015, 576, 62. [Google Scholar] [CrossRef] [Green Version]
- Pilia, M.; Hessels, J.W.T.; Stappers, B.W.; Kondratiev, V.I.; Kramer, M.; van Leeuwen, J.; Weltevrede, P.; Lyne, A.G.; Zagkouris, K.; Hassall, T.E.; et al. Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR. Astron. Astrophys. 2016, 586, 92. [Google Scholar] [CrossRef] [Green Version]
- Rożko, K.; Kijak, J.; Chyży, K.; Lewandowski, W.; Shimwell, T.; Sridhar, S.S.; Curyło, M.; Krankowski, A.; Błaszkiewicz, L. The significance of low frequency interferometric observations for the GPS pulsar flux estimations: The case of J1740 + 1000. Astrophys. J. 2020, 903, 144. [Google Scholar] [CrossRef]
- Tasse, C.; Van Diepen, G.; Van Der Tol, S.; Van Weeren, R.J.; Van Zwieten, J.E.; Batejat, F.; Bhatnagar, S.; Van Bemmel, I.; Bîrzan, L.; Bonafede, A.; et al. LOFAR calibration and wide-field imaging. Comptes Rendus Phys. 2012, 13, 28–32. [Google Scholar] [CrossRef]
- Van Der Tol, S.; Van Der Veen, A. Ionospheric Calibration for the LOFAR Radio Telescope. In Proceedings of the 2007 International Symposium on Signals, Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), San Jose/Silicon Valley, CA, USA, 3–5 October 2007; Volume 2, pp. 1–4. [Google Scholar]
- Białkowski, S.; Lewandowski, W.; Kijak, J.; Błaszkiewicz, L.; Krankowski, A.; Osłowski, S. Mode switching characteristics of PSR B0329+54 at 150 MHz. Astrophys. Space Sci. 2018, 363, 110. [Google Scholar] [CrossRef]
- Bilous, A.V.; Hessels, J.W.T.; Kondratiev, V.I.; Van Leeuwen, J.; Stappers, B.W.; Weltevrede, P.; Falcke, H.; Hassall, T.E.; Pilia, M.; Keane, E.F.; et al. LOFAR observations of PSR B0943+10: Profile evolution and discovery of a systematically changing profile delay in bright mode. Astron. Astrophys. 2014, 572, 52. [Google Scholar] [CrossRef] [Green Version]
Date | Start Time 1 | End Time 1 | S/N 2 | Relative Flux 2 | ROT 2 | No of Close-Ups | No of Points | Correlation Coefficient 3 |
---|---|---|---|---|---|---|---|---|
19 May 2017 | 15:00 | 23:59 | 131.6 | 2.08 | 0.294 | 3 | 13 | −0.743 |
20 May 2017 | 00:00 | 20:00 | 184.4 | 3.41 | 0.334 | 6 | 50 | −0.571 4 |
19 August 2017 | 00:00 | 8:00 | 396.9 | 7.75 | 0.042 | 2 | 13 | −0.138 |
Date | Start Time 1 | End Time 1 | S/N 2 | Relative Flux 2 | ROT 2 | No of close-ups | No of Points | Correlation Coefficient 3 |
---|---|---|---|---|---|---|---|---|
10 April 2017 | 00:00 | 04:30 | 218.5 | 2.44 | 0,114 | 4 | 27 | −0.468 |
8 May 2017 | 00:00 | 05:30 | 96.1 | 0.94 | 0,082 | 4 | 27 | −0.712 |
13 May 2017 | 00:00 | 15:30 | 93.4 | 0.91 | 0,270 | 4 | 27 | −0.468 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszkiewicz, L.P.; Flisek, P.; Kotulak, K.; Krankowski, A.; Lewandowski, W.; Kijak, J.; Froń, A. Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR. Sensors 2021, 21, 51. https://doi.org/10.3390/s21010051
Błaszkiewicz LP, Flisek P, Kotulak K, Krankowski A, Lewandowski W, Kijak J, Froń A. Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR. Sensors. 2021; 21(1):51. https://doi.org/10.3390/s21010051
Chicago/Turabian StyleBłaszkiewicz, Leszek P., Paweł Flisek, Kacper Kotulak, Andrzej Krankowski, Wojciech Lewandowski, Jarosław Kijak, and Adam Froń. 2021. "Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR" Sensors 21, no. 1: 51. https://doi.org/10.3390/s21010051
APA StyleBłaszkiewicz, L. P., Flisek, P., Kotulak, K., Krankowski, A., Lewandowski, W., Kijak, J., & Froń, A. (2021). Finding the Ionospheric Fluctuations Reflection in the Pulsar Signals’ Characteristics Observed with LOFAR. Sensors, 21(1), 51. https://doi.org/10.3390/s21010051