Semiconductor Gas Sensors: Materials, Technology, Design, and Application
Abstract
:1. Introduction
2. Semiconductor Sensing Materials
2.1. A Brief History and Current Research Interest
2.2. Metal Oxide Semiconductors
2.2.1. Tin Oxide (SnO2)
2.2.2. Zinc Oxide (ZnO)
2.2.3. Copper Oxide (CuO)
2.2.4. Nickel Oxide (NiO)
2.2.5. Chromium Oxide (Cr2O3)
2.2.6. Zinc stannate (ZnSnO3 and Zn2SnO4)
2.2.7. Heterostructures
2.3. Conducting Polymers
2.4. Carbon Nanotubes
2.5. 2D Materials
3. Sensor Fabrication
4. Sensor Device
4.1. Gas Sensor Signal Conditioning and Interfaces
4.1.1. Hybrid
4.1.2. Monolithic
4.2. Driving, Sensing, and Control Circuitry
4.2.1. Heater Driver
4.2.2. Temperature Sensor
4.2.3. Controller
4.3. Sensing Material Measurement and Readout Interface
5. Application
5.1. Electronic Nose (e-Nose or eNose)
- explosive and flammable material detection for public safety and welfare as well as for passenger and personnel security in airline transportation;
- perfume and cologne development and choice of fragrance additives as well as personal application product enhancement and consumer appeal in cosmetics;
- ingredient or product consistency confirmation for brand recognition and consumer fraud prevention as well as detecting off-flavors and characterizing taste and smell to determine contamination or ripeness or spoilage inside food and beverage quality control assessment;
- safe food supply and crop protection, crop ripeness, and preservation treatments for harvest timing and storage in agriculture;
- monitoring smell related processing and quality during food production [181];
- checking product characteristics and consistency for processing controls as well as aroma and flavor uniformity across products, but also toxic gas leak detection and fire alarms for the purposes of safety, security, and proper work conditions in any manufacturing industrial sector;
- pathogen identification and disease detection together with patient treatment selection and prognoses as well as checking nutrition status, organ failures, disease diagnoses, metabolic disorders, and general physiological conditions inside medical, healthcare, and clinical sectors;
- biological and chemical weapons and explosive materials detection in defense and military sectors;
- quality control of drug purity including formulation consistency and uniformity in product mixtures for the pharmaceutical industry.
5.2. Safety and Security
5.3. Health Care and Medical
5.4. Air Quality and Environmental Monitoring
5.5. Automotive
5.6. Industrial
Author Contributions
Funding
Conflicts of Interest
References
- Air Pollutants. Centers for Disease Control and Prevention (CDC). Available online: https://www.cdc.gov/air/pollutants.htm (accessed on 6 November 2020).
- Overview of Greenhouse Gases. Greenhouse Gas Emissions. EPA—United States Environmental Protection Agency. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 6 November 2020).
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Mehmood, F.; Ahmad, S.; Kim, D.H. Desing and implementation of an interworking IoT platform and marketplace in Could of Things. Sustainability 2019, 11, 5952. [Google Scholar] [CrossRef] [Green Version]
- Trilles, S.; Gonzales-Perez, A.; Huerta, J. An IoT platform based on microservices and serverless paradigms for smart farming process. Sensors 2020, 20, 2418. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Islam, M.S.; Deng, H. Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future Internet of Things. IEEE Internet Things J. 2014, 1, 300–310. [Google Scholar] [CrossRef]
- IEEE Standard for Local and Metropolitan Area Networks—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Available online: https://standards.ieee.org/standard/802_11-2016.html (accessed on 25 October 2020).
- Stamenkovic, Z.; Leger, G.; Bosio, A. Silicon Systems for Wireless LAN; World Scientific Publishing Co.: Singapore, 2021; in press. [Google Scholar] [CrossRef]
- IEEE Standard for Air Interface for Broadband Wireless Access Systems. Available online: https://ieeexplore.ieee.org/document/8303870 (accessed on 25 October 2020).
- Mirzaei, A.; Hashemi, B.; Janghorban, K. α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 2016, 27, 3109–3144. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolic, M.V. An overview of oxide materials for gas sensors. In Proceedings of the 2020 23rd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Novi Sad, Serbia, 22–24 April 2020. [Google Scholar] [CrossRef]
- Dai, J.; Obeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed gas sensors. Chem. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef]
- Kang, K.; Yang, D.; Park, J.; Kim, S.; Cho, I.; Yang, H.H.; Cho, M.; Mousavi, S.; Choi, K.H.; Park, I. Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing toward highly integrated and multiplexed gas sensor applications. Sens. Actuators B 2017, 250, 574–583. [Google Scholar] [CrossRef]
- Potyrailo, R. Multivariable sensors for ubiquitous monitoring of gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef] [PubMed]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Brattain, W.H.; Bardeen, J. Surface properties of Germanium. Bell. Syst. Tech. J. 1952, 32, 1–41. [Google Scholar] [CrossRef]
- Heiland, G. Zum einfluss von wasserstoff auf die elektrische leitfaegkeit von ZnO-kristallen. Z. Phys. 1954, 138, 459–464. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A. A new detector for gaseous components using semiconductor thin film. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Shaver, P.J. Activated tungsten oxide gas detectors. Appl. Phys. Lett. 1967, 11, 255–257. [Google Scholar] [CrossRef]
- Taguchi, N. Gas Detecting Devices. U.S. Patent 3,631,436, 28 December 1971. [Google Scholar]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced micro- and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yeow, J.T.W. A review of carbon nanotubes—Based gas sensors. J. Sens. 2009, 2009, 493904. [Google Scholar] [CrossRef]
- Mao, S.; Lu, G.; Chen, J. Nanocarbon-based gas sensors: Progress and challenges. J. Mater. Chem. A 2014, 2, 5573. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, S.; Nag, P.; Devi, P.S. Enhanced performance of CNT/SnO2 thick film gas sensors towards hydrogen. Mater. Chem. Phys. 2014, 147, 79–85. [Google Scholar] [CrossRef]
- Patil, S.L.; Chongule, M.A.; Sen, S.; Patil, V.B. Measurements on room temperature gas sensing properties of CSA doped polyaniline-ZnO nanocomposites. Measurement 2012, 45, 243–249. [Google Scholar] [CrossRef]
- Sharma, S.; Hussain, S.; Singh, S.; Islam, S.S. MWCNT-conducting polymer composite based ammonia gas sensors; A new approach for complete recovery process. Sens. Actuators B 2014, 194, 213–219. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 2019, 1901329. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1271–1276. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D materials for gas sensing applications. A review on grapheme oxide, MoS2, WS2 and phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.; Tsai, P.P.; Chen, H. Comparison study of SnO2 thin and thick-film gas sensors. Sens. Actuators B 2000, 67, 122–127. [Google Scholar] [CrossRef]
- Chiu, H.C.; Yeh, C.S. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. C 2007, 111, 7256–7259. [Google Scholar] [CrossRef]
- Carrotta, M.C.; Cervi, A.; di Natale, V.; Gherardi, S.; Giberti, A.; Guidi, V.; Puzzovio, D.; Vendemiati, B.; Martinelli, G.; Sacerdoti, M.; et al. ZnO gas sensors: A comparison between nanoparticles and nanoterapods—Based thick films. Sens. Actuators B 2009, 137, 164–169. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Y.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 2018, 427, 281–287. [Google Scholar] [CrossRef]
- Giberti, A.; Carotta, M.C.; Malagu, C.; Aldao, M.S.; Ponce, M.A.; Parra, R. Permittivity measurements in nanostructured TiO2 gas sensors. Phys. Status Solidi A 2011, 208, 118–122. [Google Scholar] [CrossRef]
- Galatsis, K.; Li, Y.X.; Wlodarski, W.; Comini, E.; Sperveglieru, G.; Cantalini, C.; Santucci, S.; Passacantando, M. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors. Sens. Actuators B 2002, 83, 276–280. [Google Scholar] [CrossRef]
- Urasinska-Wojcik, B.; Vincent, T.A.; Chowdhury, M.A.; Gardner, J.W. Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sens. Actuators B 2017, 239, 1051–1059. [Google Scholar] [CrossRef]
- Staerz, A.; Weimar, U.; Barsan, N. Understanding the potential of WO3 based sensors for breath analysis. Sensors 2016, 16, 1815. [Google Scholar] [CrossRef]
- Volanti, D.P.; Felix, A.A.; Orlandi, M.O.; Whitfield, G.; Yang, D.-J.; Longo, E.; Tuller, H.L.; Varela, J.A. The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv. Funct. Mater. 2013, 23, 1759–1766. [Google Scholar] [CrossRef]
- Yang, C.; Su, X.; Wang, J.; Cao, X.; Wang, S.; Zhang, L. Facile microwave assisted hydrothermal synthesis of varied shaped CuO nanoparticles and their gas sensing properties. Sens. Actuators B 2013, 185, 156–165. [Google Scholar] [CrossRef]
- Yu, Y.; Xia, Y.; Zeng, W.; Liu, R. Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Mater. Lett. 2017, 206, 80–83. [Google Scholar] [CrossRef]
- Steinbach, H.; Kannan, S.; Rieth, L.; Solzbacher, F. H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sens. Actuators B 2010, 151, 162–168. [Google Scholar] [CrossRef]
- Pokhrel, S.; Simion, C.E.; Quemener, V.; Barsan, N.; Weimar, U. Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements. Sens. Actuators B 2008, 113, 78–83. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, H.J.; Jeong, H.M.; Lee, J.H. Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity. Sens. Actuators B 2014, 202, 263–271. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Krstic, J.B.; Labus, N.J.; Lukovic, M.D.; Dojcinovic, M.P.; Radovanovic, M.; Tadic, N.B. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. Mater. Sci. Eng. B 2020, 257, 114547. [Google Scholar] [CrossRef]
- Tripathy, A.; Pramanik, S.; Manna, A.; Bhuyan, S.; Shah, N.F.A.; Radzi, Z.; Osman, N.A.A. Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 2016, 16, 1135. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liang, S. Morphological zinc-stannate: Synthesis, fundamental properties and applications. J. Mater. Chem. A 2017, 5, 20534. [Google Scholar] [CrossRef]
- Sutka, A.; Gross, K.A. Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B 2016, 222, 95–105. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Vasiljevic, Z.Z.; Lukovic, M.D.; Pavlovic, V.P.; Krstic, J.B.; Vujancevic, J.; Tadic, N.; Vlahovic, B.; Pavlovic, V.B. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. Int. J. Appl. Ceram. Technol. 2019, 16, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Tulliani, J.-L.; Baroni, C.; Zavattaro, L.; Grignani, C. Strontium-doped hematite as a possible humidity sensing material for soil water content determination. Sensors 2013, 13, 12070–12092. [Google Scholar] [CrossRef]
- Tulliani, J.-M.; Bonville, P. Influence of dopants on the electrical resistance of hematite-based humidity sensors. Ceram. Int. 2005, 31, 507–514. [Google Scholar] [CrossRef]
- Falsafi, F.; Hashemi, B.; Mirzaei, A.; Fazio, E.; Neri, F.; Donato, N.; Leonardi, S.G.; Neri, G. Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor. Ceram. Int. 2017, 43, 1029–1037. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanoo, I.; Natile, M.M.; Comini, E.; Sberveglieri, G. Highly sensitive and selective detection of dimethylamine through Nb doping of TiO2 nanotubes for potential use in seafood quality control. Sens. Actuators B 2020, 303, 127217. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Lukovic, M.D.; Labus, N. Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3). J. Mater. Sci. Mater. Electron. 2019, 30, 12399–12405. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Vasiljevic, Z.Z.; Lukovic, M.D.; Pavlovic, V.P.; Vujancevic, J.; Radovanovic, M.; Krstic, J.B.; Vlahovic, B.; Pavlovic, V.B. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) thick films. Sens. Actuators B 2018, 227, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.W.; Park, B.S.; Akbar, S.A.; Lee, W.S.; Hong, K.-J.; Seo, Y.-J.; Shin, D.-C.; Park, J.-S.; Choi, G.-P. ZnO sol-gel derived porous film for gas sensing. Sens. Actuators B 2003, 96, 717–722. [Google Scholar] [CrossRef]
- Capone, S.; Siciliano, P.; Quaranta, F.; Rella, R.; Epifani, M.; Vasanelli, L. Analysis of vapors and foods by means of an electronic nose based on a sol-gel metal-oxide sensors array. Sens. Actuators B 2000, 69, 230–235. [Google Scholar] [CrossRef]
- Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa, D.S. Electrospun ceramic fibers and hybrid nanofiber composites for gas sensing. ACS Appl. Nano Mater. 2019, 2, 4026–4042. [Google Scholar] [CrossRef]
- Song, L.; Yang, L.; Wang, Z.; Liu, D.; Luo, L.; Zhu, X.; Xi, Y.; Yang, Z.; Han, N.; Wang, F.; et al. One step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sens. Actuators B 2019, 283, 793–801. [Google Scholar] [CrossRef]
- Patel, N.G.; Makhija, K.K.; Pauchal, C.J. Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films. Sens. Actuators B 1994, 21, 193–197. [Google Scholar] [CrossRef]
- Mochida, T.; Kikuci, K.; Kondo, T.; IUeno, H.; Matsuura, Y. Highly sensitive and selective H2S gas sensor from r.f. sputtered SnO2 thin film. Sens. Actuators B 1995, 25, 433–439. [Google Scholar] [CrossRef]
- Schipani, F.; Aldao, C.M.; Ponce, M.A. Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films. AIP Adv. 2012, 2, 032138. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based sensor research: How to? Sens. Actuators B 2007, 121, 18035. [Google Scholar] [CrossRef]
- Barsan, N.; Schweizer-Berberich, M.; Goepel, W. Fundamental and practical aspects in the design of nanoscaled SnO2 sensors: A status report. Fresneius J. Anal. Chem. 1999, 365, 287–304. [Google Scholar] [CrossRef]
- Kappler, J.; Barsan, N.; Weimar, U.; Dieguez, A.; Alay, J.L.; Rpmano-Rodrigues, A.; Morante, J.R.; Goepel, W. Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresneius J. Anal. Chem. 1998, 361, 110–114. [Google Scholar] [CrossRef]
- Ivanov, P.; Llobet, E.; Vilanova, X.; Bresmes, J.; Hubalek, J.; Coweig, X. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B 2004, 99, 201–206. [Google Scholar] [CrossRef]
- Dong, K.Y.; Choi, J.K.; Hwang, I.S.; Lee, J.W.; Kang, B.H.; Ham, D.J.; Lee, J.H.; Ju, B.K. Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater. Sens. Actuators B 2011, 157, 154–161. [Google Scholar] [CrossRef]
- Lee, Y.C.; Huang, H.; Tan, O.K.; Tse, M.S. Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sens. Actuators B 2008, 132, 239–242. [Google Scholar] [CrossRef]
- Choi, J.K.; Hwang, I.S.; Kim, S.J.; Park, J.S.; Park, S.S.; Jeong, U.; Kang, Y.C.; Lee, J.H. Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B 2010, 150, 191–199. [Google Scholar] [CrossRef]
- Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T.; Nakatani, N.; Saito, M.; Mori, M. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sens. Actuators B 2009, 135, 524–529. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Huang, J.; Wang, Y.; Kong, F.; Wu, S.; Zhang, S.; Huang, W. Preparation and Co gas sensing behavior of Au-doped SnO2 sensors. Vacuum 2006, 81, 394–397. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Hwang, Y.K.; Jhung, S.H.; Kim, H.K.; Hwang, J.S.; Mulla, I.S.; Chang, J.S. CO sensor derived from mesostructured Au-doped SnO2 thin film. Appl. Surf. Sci. 2006, 252, 4298–4305. [Google Scholar] [CrossRef]
- Galatsis, K.; Cukrov, L.; Wlodarski, W.; McCormick, P.; Kalantar-zadeh, K.; Comini, E.; Sberveglieri, G. p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sens. Actuators B 2003, 93, 562–565. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Chen, Z.; Fu, P. The effect of Ni doping concentration on the gas sensing properties of Ni-doped SnO2. Sens. Actuators B 2017, 239, 501–510. [Google Scholar] [CrossRef]
- Fort, A.; Mugnaini, M.; Rocchi, S.; Vignoli, V.; Comini, E.; Faglia, G.; Ponzoni, A. Metal-oxide nanowire sensors for CO detection: Characterization and modeling. Sens. Actuators B 2010, 148, 283–291. [Google Scholar] [CrossRef]
- Wang, D.; Wab, K.; Zhang, M.; Li, H.; Wang, P.; Wang, X.; Yang, J. Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens. Actuators B 2019, 283, 714–723. [Google Scholar] [CrossRef]
- Liu, X.; Ma, T.; Xu, X.; Sun, L.; Zeng, L.; Scmidt, O.G.; Zhang, J. Rolled-up SnO2 nanomembranes: A new platform for efficient gas sensors. Sens. Actuators B 2018, 264, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.Y.; Hsu, M.S.; Su, P.G.; Liu, H.M.; Wu, R.J.; Lai, H.L. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B 2004, 101, 81–89. [Google Scholar] [CrossRef]
- Singkammo, S.; Wisitsoraat, A.; Sriprachuabwong, C.; Tuantranout, A.; Phanichphant, S.; Llewhirau, C. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Appl. Mater. Interfaces 2015, 7, 3077–3092. [Google Scholar] [CrossRef]
- Lai, T.Y.; Fang, T.H.; Hsiao, Y.J.; Chou, C.A. Characteristics of Au-doped SnO2-ZnO heteronanostructures for gas sensing applications. Vacuum 2019, 166, 155–161. [Google Scholar] [CrossRef]
- Shu, J.; Qiu, Z.; Lv, S.; Zhang, K.; Tang, D. Cu2+ doped SnO2 nanograin/polypyrrole nanospheres with synergic enhanced properties for ultrasensitive room-temperature H2S gas sensing. Anal. Chem. 2017, 89, 11135–11142. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, T.; Yu, Q.; Wang, R.; Zheng, Y.; Liu, L.; Yang, H. Properties of humidity sensing ZnO nanorods—Base sensor fabricated by screen-printing. Sens. Actuators B 2008, 133, 638–643. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.W.; Yang, Y.; Huang, H.; Lee, Y.C.; Tan, O.K.; Vayssiers, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 2006, 17, 4995–4998. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas sensor applications. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moumen, A.; Kaur, N.; Poli, N.; Zappa, D.; Comini, E. One dimensional ZnO nanostructures: Growth and chemical sensing performances. Nanomaterials 2020, 10, 1940. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensors: A review. Sens. Actuators A 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Motaung, D.E. A review on recent progress of p-type nickel oxide based gas sensors. Future perspectives. J. Alloys Compd. 2019, 805, 267–294. [Google Scholar] [CrossRef]
- Chou, P.C.; Chen, H.I.; Liu, I.P.; Chen, C.C.; Liou, J.K.; Hsu, K.S.; Liu, W.C. On the ammonia gas sensing performance of a RF-sputtered NiO thin film sensor. IEEE Sens. J. 2015, 15, 3711–3715. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Zhao, H.; An, L.; Zhang, L.; Shi, R.; Wang, L.; Bao, L.; Chen, Y. Synthesis and enhanced gas-sensing properties of ultralong nanowires assembled with NiO nanocrystals. Sens. Actuators B 2011, 156, 251–262. [Google Scholar] [CrossRef]
- Kaur, N.; Commini, E.; Zappa, D.; Poli, N.; Sberveglieri, G. Nickel oxide nanowires: Vapour liquid solid synthesis and integration into a gas sensing device. Nanotechnology 2016, 27, 205701. [Google Scholar] [CrossRef]
- Wang, C.; Cui, X.; Liu, J.; Zhou, X.; Chen, X.; Sun, P.; Hu, X.; Li, X.; Zheng, J.; Lu, G. Design of superior ethanol gas sensor based on Al-doped NiO nanorod flowers. ACS Sens. 2016, 1, 131–136. [Google Scholar] [CrossRef]
- Ma, H.; Xu, Y.; Rong, Z.; Cheng, X.; Gao, S.; Zhang, X.; Zhao, X.; Huo, L. Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres. Sens. Actuators B 2012, 174, 325–331. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Y.; Sui, L.; Zhang, X.; Gao, S.; Cheng, X.; Zhao, H.; Huo, L. Highly sensitive low-temperature triethylamine sensor based on mesoporous microspheres. Sens. Actuators B 2015, 220, 910–918. [Google Scholar] [CrossRef]
- Kim, T.H.; Yoon, J.W.; Kang, Y.C.; Abdel-Hardy, F.; Wazzan, A.A.; Lee, J.H. A strategy for ultrasensitive and selective detection of methylamine using p-type Cr2O3: Morphological design of sensing materials, control of charge carrier concentrations and configurational tuning of Au catalysts. Sens. Actuators B 2017, 240, 1049–1051. [Google Scholar] [CrossRef]
- Cantalini, C. Cr2O3, WO3 single and Cr/W binary oxide prepared by physical methods for gas sensing applications. J. Eur. Ceram. Soc. 2004, 24, 1421–1424. [Google Scholar] [CrossRef]
- Zappa, D.; Galtstyan, V.; Kaur, N.; Arachchige, H.M.M.M.; Sisman, O.; Comini, E. Metal oxide-based heterostructures for gas sensors—A review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Comini, E.; Guidi, V.; Frigeri, C.; Ricco, I.; Sberveglieri, G. CO sensing properties of titanium and iron oxide nanosized thin films. Sens. Actuators B 2001, 77, 16–21. [Google Scholar] [CrossRef]
- Araujo, E.S.; Leao, V.N.S. TiO2/WO3 heterogeneous structures prepared by electrospinning and sintering steps: Characterization and analysis of the impedance variation to humidity. J. Adv. Ceram. 2019, 8, 40145. [Google Scholar] [CrossRef] [Green Version]
- Rimoldi, L.; Meroni, D.; Pargoletti, E.; Biraghi, I.; Cappelletti, G.; Ardizzone, S. Role of the growth step on the structural, optical and surface features of TiO2/SnO2 composites. R. Soc. Open Sci. 2019, 6, 181662. [Google Scholar] [CrossRef] [Green Version]
- Velumani, M.; Meher, S.R.; Alex, Z.C. Impedometric humidity sensing characteristics of SnO2 thin films and SnO2-ZnO composite thin films grown by magnetron sputtering. J. Mater. Sci. Mater. Electron. 2018, 29, 3999–4010. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Dojcinovic, M.P.; Vasiljevic, Z.Z.; Lukovic, M.D.; Labus, N.J. Nanocomposite Zn2SnO4/SnO2 thick films as a humidity sensing material. IEEE Sens. J. 2020, 20, 7509–7516. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, M.V.; Lukovic, M.D. Influence of SnO2 content on the humidity dependent impedance of the MgFe2O4-Fe2O3-SnO2 compound. Chemosensors 2020, 8, 39. [Google Scholar] [CrossRef]
- Li, X.; Lu, D.; Shao, C.; Lu, G.; Li, X.; Liu, Y. Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B 2018, 258, 436–446. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. SnO2 (n)—NiO (p) composite nanowebs: Gas sensing properties and sensing mechanisms. Sens. Actuators B 2018, 258, 204–214. [Google Scholar] [CrossRef]
- Meng, D.; Liu, D.; Wang, G.; Shen, Y.; San, X.; Li, M.; Meng, F. Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B 2018, 273, 418–428. [Google Scholar] [CrossRef]
- Jaisutti, R.; Lee, M.; Kim, J.; Choi, S.; Ha, T.-J.; Kim, J.; Kim, H.; Park, S.K.; Kim, Y.-H. Ultrasensitive room-temperature operable gas sensors using p-type Na:ZnO nanoflowers for diabetes detection. ACS Appl. Mater. Interfaces 2017, 9, 8796–8804. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.-H.; Kim, H.W.; Kim, S.S. How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature. Sens. Actuators B 2018, 258, 270–294. [Google Scholar] [CrossRef]
- Li, F.; Gao, X.; Wang, R.; Zhang, T. Designing of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function. Appl. Surf. Sci. 2018, 442, 30–37. [Google Scholar] [CrossRef]
- Li, F.; Gao, X.; Wang, R.; Zhang, T.; Lu, G. Study on TiO2-SnO2 core shell heterostrucutre nanofibers with different work function and its application in gas sensor. Sens. Actuators B 2018, 248, 812–819. [Google Scholar] [CrossRef]
- Jia, X.; Cheng, C.; Feng, S.; Yu, X.; Xia, L.; Song, H. Hierarchical porous nanorod@core-shell α-Fe2O3/TiO2 microspheres: Synthesis, characterization and gas sensing applications. Appl. Surf. Sci. 2019, 481, 1001–1010. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, R.; Liu, S.; Song, J.; Chen, J.; Dong, B.; Song, H. NiO@ZnO heterostructured nanotubes: Coelectrospinning fabrication, characterization and highly enhanced gas sensing properties. Inorg. Chem. 2012, 51, 7733–7740. [Google Scholar] [CrossRef]
- Hamilton, S.; Hepher, M.J.; Sommerville, J. Polypyrrole materials for detection and discrimination of volatile organic compounds. Sens. Actuators B 2005, 107, 424–432. [Google Scholar] [CrossRef]
- Jun, H.-K.; Hoh, Y.-S.; Lee, D.-S.; Lee, S.-T.; Lim, J.-O.; Lee, D.-D.; Huh, J.-S. Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sens. Actuators B 2003, 96, 576–581. [Google Scholar] [CrossRef]
- Navale, S.T.; Mane, A.T.; Chongule, M.A.; Sakhare, R.D.; Nalage, S.R.; Patil, V.B. Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth. Met. 2014, 189, 94–99. [Google Scholar] [CrossRef]
- Su, P.G.; Lee, C.T.; Chou, C.T. Flexible NH3 sensors fabricated by in-situ self-assembly of polypyrrole. Talanta 2009, 80, 763–769. [Google Scholar] [CrossRef]
- Lakard, B.; Carquigny, S.; Segut, O.; Patois, T.; Lackard, S. Gas sensors based on electrodeposited polymers. Metals 2015, 15, 1371–1386. [Google Scholar] [CrossRef] [Green Version]
- Naveen, M.H.; Gurundatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Gangopadhyay, R.; De, A. Conducting polymer composites: Novel materials for gas sensing. Sens. Actuators B 2001, 77, 326–329. [Google Scholar] [CrossRef]
- Ryan, M.A.; Shevade, A.V.; Zhou, H.; Homer, M.L. Polymer-carbon black composite sensors in an Electronic nose for air-quality monitoring. MRS Bull. 2004, 29, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Shevade, A.V.; Homer, M.L.; Zhou, H.; Jewell, A.D.; Kisor, A.K.; Manatt, K.S.; Torres, J.; Soler, J.; Yen, S.-P.S.; Ryan, M.A.; et al. Development of the third generation JPL Electronic nose for International Space Station technology demonstration. SAE Tech. Pap. 2007. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Ha, S.C.; Yang, Y.; Kim, Y.J.; Cho, S.M.; Yang, H.; Kim, Y.T. Portable electronic nose system based on the carbon black-polymer composite sensor array. Sens. Actuators B 2005, 108, 285–291. [Google Scholar] [CrossRef]
- Ram, M.K.; Yavuz, O.; Lahsangah, V.; Aldissi, M. CO gas sensing from ultrathin nano-composite conducting polymer film. Sens. Actuators B 2005, 106, 750–757. [Google Scholar] [CrossRef]
- Lei, W.; Si, W.; Xu, Y.; Gu, Z.; Hao, Q. Conducting polymer composites with grapheme for use in chemical sensors and biosensors. Microchim. Acta 2014, 181, 707–722. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.W.; Chapline, M.G.; Peng, S.; Cho, K.J.; Dai, H.J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Kumar, A. Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens. Actuators B 2014, 203, 349–362. [Google Scholar] [CrossRef]
- Wong, Y.M.; Kang, W.P.; Davidson, J.L.; Wisitsora-At, A.; Soh, K.L. A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators B 2003, 93, 327–332. [Google Scholar] [CrossRef]
- Leghrib, E.; Felten, A.; Pireaux, J.J.; Llobet, E. Gas sensors based on doped CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Film. 2011, 520, 966–970. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.; Zhang, H.; Song, Z.; Li, Y.; Wang, Y. The functionalized single-walled carbon nanotube gas sensor with Pd nanoparticles for hydrogen detection in high-voltage transformers. Front. Chem. 2020, 8, 174. [Google Scholar] [CrossRef]
- Lu, G.; Ocola, L.E.; Chen, J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 2009, 20, 445502. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Beake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Neri, G. Thin 2D: The new dimensionality in gas sensing. Chemosensors 2017, 5, 21. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, W.; Li, Y. The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J. Alloys Compd. 2018, 749, 355–362. [Google Scholar] [CrossRef]
- Lee, E.; Kim, D.J. Recent exploration of two-dimensional MXenes for gas sensing: From a theoretical to an experimental view. J. Electrochem. Soc. 2020, 167, 037515. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Vahid Mohammadi, A.; Yoon, Y.S.; Beidaghi, M.; Kim, D.J. Two dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward non polar gases. ACS Sens. 2019, 4, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Eom, W.; Shin, H.; Ambade, R.B.; Bang, J.H.; Kim, H.W.; Han, T.H. Room temperature, highly durable Ti3C2TxMXene/Graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 2020, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Song, X.; Sun, K.; Cheng, L.; Ma, W. MOFs derived nanomaterials for gas sensing. Polyhedron 2018, 152, 155–163. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Z.; Yu, S.; Mi, Q.; Pan, Q. Diversiform metal-oxide based hybrid nanostructures for gas sensing with versatile prospects. Coord. Chem. Rev. 2020, 413, 213272. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhang, X.X.; Zhang, W.Y. Sulfur dioxide sensing properties of MOF-derived ZnFe2O4 functionalized with reduced graphene oxide at room temperature. Rare Met. 2020, 1–10, accepted for publication. [Google Scholar] [CrossRef]
- Jeo, M.H.; Yoo, J.Y.; Jo, M.S.; Yoon, J.B. Geometrically structured nanomaterials for nanosensors, NEMS and nanosieves. Adv. Mater. 2020, 32, 1907082. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R. Technologies for printing sensors and electronics over large flexible substrates. IEEE Sens. J. 2014, 15, 3164–3185. [Google Scholar] [CrossRef]
- Fu, S.; Tao, J.; Wu, W.; Sun, J.; Li, F.; Li, J.; Huo, Z.; Xia, Z.; Bao, R.; Pan, C. Fabrication of large-area bimodal sensors by all-inkjet printing. Adv. Mater. Technol. 2019, 4, 180703. [Google Scholar] [CrossRef]
- Liu, X.; Tarn, T.-J.; Huang, F.; Fan, J. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology 2015, 15, 1–13. [Google Scholar] [CrossRef]
- Gebeauer, J.S.; Mackert, V.; Ognjanovic, S.; Winterer, M. Tailoring metal oxide nanoparticle dispersions for inkjet printing. J. Colloid Interface Sci. 2018, 526, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-C.; De Luca, A.; Zhang, Q.; Zhu, X.; Ogbeide, O.; Um, D.-S.; Hu, G.; Albrow-Owen, T.; Udrea, F.; Hasan, T. Inkjet printed CMOS integrated graphene-metal oxide sensors for breath analysis. NPJ 2D Mater. Appl. 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Rieu, M.; Camara, M.; Tournier, G.; Viricelle, J.-P.; Pijolat, C.; de Rooij, N.F.; Briand, D. Fully inkjet printed SnO2 gas sensor on plastic substrate. Sens. Actuators B 2016, 236, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Sakthivel, B.; Manjakkal, L.; Nammalvar, G. High performance CuO rectangles-based room temperature flexible NH3 sensor. IEEE Sens. J. 2017, 17, 6529–6536. [Google Scholar] [CrossRef] [Green Version]
- Corbat, J.; Briand, D.; Yue, L.; Raible, S.; de Rooij, N.F. Drop-coated metal-oxide gas sensor on polyimide foil with reduced power consumption for wireless applications. Sens. Actuators B 2012, 161, 862–868. [Google Scholar] [CrossRef]
- Hyodo, T.; Mori, T.; Kawahara, A.; Katsuki, H.; Shimizu, Y.; Egashira, M. Gas sensing properties of semiconductor heterolayer sensors fabricated y slide-off transfer printing. Sens. Actuators B 2001, 77, 41–47. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Z.; Jauregui, L.A.; Yu, Q.; Pillai, R.; Cao, H.; Bao, J.; Chen, Y.P.; Pei, S.S. Wafer-scale synthesis of grapheme by chemical vapor deposition and its application in hydrogen sensing. Sens. Actuators B 2010, 150, 296–300. [Google Scholar] [CrossRef]
- Sosada-Ludwikowska, F.; Winmer-Teubeubacher, R.; Sagmeister, M.; Köen, A. Transfer printing technology as a straightforward method to fabricate chemical sensors based on tin-dioxide nanowires. Sensors 2019, 19, 3049. [Google Scholar] [CrossRef] [Green Version]
- Sheklurev, M.; Zipakov, A.; Torres, A.; Vorobeva, N.S.; Hakleroad, A.; Zaslakov, A.; Syosev, V.; Sinitskii, A. Highly sensitive gas sensors based on grapheme nanoribons grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 7392–7402. [Google Scholar] [CrossRef]
- Steinhauer, S.; Brunet, E.; Mauer, T.; Matinati, G.C.; Koeck, A.; Fendenberg, O.; Gspan, C.; Grogger, W.; Neuhold, A.; Resel, R. Gas sensing properties of novel CuO nanowire devices. Sens. Actuators B 2013, 187, 50–58. [Google Scholar] [CrossRef]
- Choi, K.W.; Lee, J.S.; Seo, M.H.; Jo, M.S.; Yoo, J.Y.; Sim, G.S. Batch-fabricated CO gas sensor in large area (8-inch) with sub-10mW power operation. Sens. Actuators B 2019, 289, 153–159. [Google Scholar] [CrossRef]
- Choi, K.W.; Jo, M.S.; Lee, J.S.; Yoo, J.Y.; Yoon, J.B. Perfectly aligned, air-suspended nanowire array heater and its application in an always-on-gas sensor. Adv. Funct. Mater. 2020, 30, 2004448. [Google Scholar] [CrossRef]
- Lee, A.P.; Reedy, B.J. Temperature modulation in semiconductor gas sensing. Sens. Actuators B 1999, 60, 35–42. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Li, K.H.H.; Tan, O.K. Microhotplates for metal oxide semiconductor gas sensor applications—Towards the CMOS-MEMS monolithic approach. Micromachines 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.W.; Guha, P.K.; Udrea, F.; Covington, J.A. CMOS interfacing for integrated gas sensors: A review. IEEE Sens. J. 2010, 10, 1833–1848. [Google Scholar] [CrossRef]
- Guha, P.K.; Santra, S.; Gardner, J.W. Chapter fourteen—Integrated CMOS-based sensors for gas and odor detection. In Semiconductor Gas Sensors, 2nd ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing Series in Electronic and Optical Materials: Cambridge, UK, 2020; pp. 465–487. [Google Scholar] [CrossRef]
- Briand, D.; Courbat, J. Chapter 13—Micromachined semiconductor gas sensors. In Semiconductor Gas Sensors, 2nd ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing Series in Electronic and Optical Materials: Cambridge, UK, 2020; pp. 413–464. [Google Scholar] [CrossRef]
- Ruffer, D.; Hoehne, F.; Buhler, J. Sensirion gas platform—A milestone in the commercial application of MOx technology. Sensors 2018, 18, 1052. [Google Scholar] [CrossRef] [Green Version]
- Global Market Insights, Inc. Gas sensors Market Size, Industry Analysis Report, Regional Outlook, Application Potential, Price Trend, Competitive Market Share & Forecast. November 2018. Available online: www.gminsights.com/industry-analysis/gas-sensors-market-size (accessed on 25 October 2020).
- Grand View Research, Inc. Gas Sensor Market Size, Share & Trends Industry Analysis Report. February 2020. Available online: www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 25 October 2020).
- Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H. Smart single-chip gas sensor microsystem. Nature 2001, 414, 293–296. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, J.; Tavakoli, M.M.; Gao, Y.; Zhu, Y.; Zhang, D.; Kam, M.; He, Z.; Fan, Z. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates. Adv. Mater. 2019, 31, 1804285. [Google Scholar] [CrossRef]
- Kuretake, T.; Kawahara, S.; Motooka, M.; Uno, S. An electrochemical gas biosensor based on enzymes immobilized on chromatography paper for ethanol vapor detection. Sensors 2017, 17, 281. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhang, L.; Wang, X.; He, D.; Suo, H.; Zhao, C. Fabrication of ZnO/Carbon quantum dots composite sensor for detecting NO gas. Sensors 2020, 20, 4961. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Shim, Y.-S.; Song, Y.G.; Han, S.D.; Lee, Y.-S.; Kang, C.-Y. Highly sensitive sensors based on metal-oxide nanocolumns for fire detection. Sensors 2017, 17, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgues, J.; Hernandez, V.; Lilienthal, A.J.; Marco, S. Smelling nano aerial vehicle for gas source localization and mapping. Sensors 2019, 19, 478. [Google Scholar] [CrossRef] [Green Version]
- Salmon Fillet Fish with Skin Packaged. Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Salmon_filet_fish_with_skin_packaged.jpg (accessed on 21 October 2020).
- Wu, Y.; Liu, T.; Ling, S.H.; Szymanski, J.; Zhang, W.; Su, S.W. Air quality monitoring for vulnerable groups in residential environments using a multiple hazard gas detector. Sensors 2019, 19, 362. [Google Scholar] [CrossRef] [Green Version]
- Baldé, H.; VanderZaag, A.; Smith, W.; Desjardins, R.L. Ammonia emissions measured using two different gas finder open-path lasers. Atmosphere 2019, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Vincent, T.A.; Cole, M.; Gardner, J.W. real-time thermal modulation of high-bandwidth MOX gas sensors for mobile robot applications. Sensors 2019, 19, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagle, H.T.; Gutierrez-Osuna, R.; Schiffman, S.S. The how and why of electronic noses. IEEE Spectr. 1998, 9, 22–31. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Ren, Q.; Cao, Y.Q.; Arulraj, D.; Liu, C.; Wu, D.; Li, W.M.; Li, A.D. Review-Resistive type hydrogen sensors based on zinc-oxide nanostructures. J. Electrochem. Soc. 2020, 167, 067528. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Chapter one—Fundamentals of semi-conductor gas sensors. In Semiconductor Gas Sensors, 2nd ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing Series in Electronic and Optical Materials: Cambridge, UK, 2020; pp. 3–38. [Google Scholar] [CrossRef]
- Gas Sensors and Modules. Figaro Engineering Inc. Available online: https://www.figaro.co.jp/en/product/sensor (accessed on 8 November 2020).
- Gas Boilers from Vaillant. Available online: https://www.vaillant.co.uk/homeowners/products/gas-boiler-range/ (accessed on 8 November 2020).
- Xing, Y.; Vincent, T.A.; Fan, H.; Schaffernicht, E.; Bennets, V.H.; Lilientha, A.J.; Cole, M.; Gardner, J.W. FireNose on mobile robot in harsh environments. IEEE Sens. J. 2019, 19, 12418–12431. [Google Scholar] [CrossRef]
- Palacin, J.; Martinez, D.; Clotet, E.; Palleja, T.; Burgues, J.; Fonollosa, J.; Pardo, A.; Marco, S. Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection. Sensors 2019, 19, 1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.Y.; Yoo, X.W.; Kim, J.Y.; Jung, W.B.; Jiu, M.L.; Kim, J.S.; Jeon, H.J.; Jung, H.T. High resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 2016, 16, 4508–4515. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, G.; Haick, H. Sensors for breath testing: From nano-materials to comprehensive disease detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef]
- Jaeschke, C.; Gonzalez, O.; Glöckler, J.J.; Hagemann, L.T.; Richardson, K.E.; Androver, F.; Padilla, M.; Mitrovics, J.; Mizaikoff, B. A novel modular eNose system based on commercial MOX sensors to detect low concentrations of VOCs for breath gas analysis. Proceedings 2018, 2, 993. [Google Scholar] [CrossRef] [Green Version]
- Jaeschke, C.; Gonzalez, O.; Padilla, M.; Richardson, K.; Glöckler, J.; Mitrovics, J.; Mizaikoff, B. A novel modular system for breatch analysis using temperature modulated MOX sensors. Proceedings 2019, 14, 49. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.J.; Jang, B.H.; Lee, S.J.B.; Min, K.; Rotschield, A.; Kim, I.D. Selective detection of acetone and hydrogen sulfide for diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 2588–2597. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bemak, A. Recent developments in printing flexible wearable sensing electronics for healthcare applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.A.; Ji, S.; Kim, S.; Park, C.Y.; Myung, S.; Song, W.; Lee, S.S.; Lim, J.; An, K.S. Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Adv. 2018, 8, 11991–11996. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yi, N.; Zhu, J.; Cheng, Z.; Yin, X.; Zhang, X.; Zhu, H.; Cheng, H. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 2020, 8, 6487–6500. [Google Scholar] [CrossRef]
- Binions, R.; Naik, A.J.T. Chapter thirteen—Metal oxide semi-conductor gas sensors in environmental monitoring. In Semiconductor Gas Sensors, 1st ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing Series in Electronic and Optical Materials: Cambridge, UK, 2013; pp. 433–466. [Google Scholar]
- Peterson, P.J.D.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Vande Hey, J.; Leigh, R.J. Practical use of metal oxide semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments. Sensors 2017, 17, 1653. [Google Scholar] [CrossRef] [PubMed]
- Talazac, L.; Barbarin, F.; Mazet, L.; Varenne, C. Improvement in sensitivity and selectivity of InP-based gas sensors: Pseudo-Schottky diodes with palladium metallizations. IEEE Sens. J. 2004, 4, 45–51. [Google Scholar] [CrossRef]
- Prajapati, C.S.; Soman, R.; Rudraswamy, S.B.; Nayak, M.; Bhat, N. Single chip gas sensor array for air quality monitoring. J. Microelectromech. Syst. 2017, 26, 433–439. [Google Scholar] [CrossRef]
- Garcia-Orellana, C.J.; Macias-Macias, M.; Gonzales-Verasco, H.M.; Garcia-Manso, A.; Gallardo-Caballero, R. Low power and low cost environmental IoT electronic nose using initial action periodic measurements. Sensors 2019, 19, 3183. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Brunelli, D. Autonomous gas detection and mapping with unmanned aerial vehicles. IEEE Trans. Instrum. Meas. 2016, 65, 765–775. [Google Scholar] [CrossRef]
- Villa, T.F.; Gonzalez, F.; Miljievic, F.B.; Ristovski, Z.D.; Morawska, L. An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors 2016, 16, 1072. [Google Scholar] [CrossRef] [Green Version]
- Spannake, J.; Helwig, A.; Schulz, O.; Müller, G. Microfabrication of gas sensors. In Solid State Gas Sensing; Comini, E., Faglia, G., Sberveglieri, G., Eds.; Springer: Boston, MA, USA, 2009; pp. 1–46. [Google Scholar] [CrossRef]
- Blaschke, M.; Tille, T.; Robertson, P.; Mair, S.; Weimar, U.; Ulmer, H. MEMS gas-sensor array for monitoring the perceived car-cabin air quality. IEEE Sens. J. 2006, 6, 1298–1308. [Google Scholar] [CrossRef]
- NANOZ—The Smallest Selective Gas Sensor You Have Seen So Far. Available online: https://www.nanoz-group.eu (accessed on 8 November 2020).
- Metal Oxide Sensors. SGX Sensortech. Available online: https://www.sgxsensortech.com/products-services/industrial-safety/metal-oxide-sensors/ (accessed on 9 November 2020).
- Matindoust, S.; Baghaei-Nejad, M.; Shahrokh Abadi, M.; Zou, Z.; Zheng, L.R. Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [Google Scholar] [CrossRef]
- Funazaki, N.; Hemmi, A.; Ito, S.; Asano, Y.; Yano, Y.; Miura, N.; Yamazoe, N. Application of semiconductor gas sensor to quality control of meat freshness in food industry. Sens. Actuators B 1995, 25, 797–800. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M.; Balasubramanian, S. Meat quality assessment by electronic nose (machine olfaction technology). Sensors 2009, 9, 6058–6083. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Schmid, M. Intelligent packaging in the food sector: A brief overview. Foods 2019, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuertes, G.; Soto, I.; Carrasco, R.; Vargas, M.; Sabattini, J.; Lagos, C. Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety. J. Sens. 2016, 2016, 4046061. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. https://doi.org/10.3390/s20226694
Nikolic MV, Milovanovic V, Vasiljevic ZZ, Stamenkovic Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors. 2020; 20(22):6694. https://doi.org/10.3390/s20226694
Chicago/Turabian StyleNikolic, Maria Vesna, Vladimir Milovanovic, Zorka Z. Vasiljevic, and Zoran Stamenkovic. 2020. "Semiconductor Gas Sensors: Materials, Technology, Design, and Application" Sensors 20, no. 22: 6694. https://doi.org/10.3390/s20226694
APA StyleNikolic, M. V., Milovanovic, V., Vasiljevic, Z. Z., & Stamenkovic, Z. (2020). Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors, 20(22), 6694. https://doi.org/10.3390/s20226694