Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging
Abstract
:1. Introduction
- The proposed Healthcare Professional in the loop (HPIL) model acts as an aided tool for periodontists by automatically analyzing the VELscope® image of an oral cavity to find the ROI more precisely.
- A texture-based machine learning algorithm using VELscope® images to discriminate OPMD and OML regions from a normal oral cavity.
- The design of a Graphical User Interface (GUI) to assist clinicians in the classification of OPMDs.
2. Background
2.1. State-of-the-Art Techniques and Necessity of Research
2.2. Quadtree
2.3. GLCM Texture Approach
3. Materials and Methods
3.1. Proposed System
3.2. Healthcare Professional in the Loop (HPIL)
3.3. Dataset of Auto-Fluorescence Images
3.4. Data Acquisition Using VELscope®
- The first significant stage is selecting the camera as there are a number of digital cameras accessible in the shop to be adapted for use with the VELscope® device, such as the Canon A620 and G7, and Nikon P5000. These single monocle reflex DSLR can be directly attached to the VELscope®.
- We adopted the “Canon A620” to acquire the images using the VELscope®. Table 2 depicts the setup configurations that research studies have used to capture VELscope® images of the oral cavity. Figure 5 and Figure 6 show the effects of the oral cavity images with/without the correct settings for the “Canon A620”, respectively.
3.5. GLCM
3.6. Feature Selection Based on Linear Discriminant Analysis (LDA)
3.7. K-Nearest Neighbors (KNN) Classifier
3.8. Classifier Performance
3.9. Evaluation Criteria
4. Experimental Results
4.1. Pre-Processing (Edge Detection and CHT)
4.2. Case 1: When the Device Area is Present
4.3. Case 2: When the Device Area is Absent
4.4. Classification
5. Discussion
Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Cancer Society Global Cancer Facts & Figures, Atlanta American Cancer Society. 2007. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2007.html (accessed on 11 October 2020).
- Williams, P.M.; Poh, C.F.-Y.; Hovan, A.J.; Ng, S.; Rosin, M.P. Evaluation of a suspicious oral mucosal lesion. J. Can. Dent. Assoc. 2008, 74, 275–280. [Google Scholar] [PubMed]
- Carreras-Torras, C.; Gay-Escoda, C. Techniques for early diagnosis of oral squamous cell carcinoma: Systematic review. Med. Oral Patol. Oral Cir. Bucal. 2015, 20, e305–e315. [Google Scholar] [CrossRef] [PubMed]
- El-Aziz, A.A.; Aboushousha, A.; Ali, S.; Zahran, F. Prevalence of Potentially Malignant Lesions and Oral Cancer Among Smokers in an Egyptian cohort: A Hospital-based Cross-Sectional Study. Adv. Dent. J. 2020, 2, 14–21. [Google Scholar] [CrossRef]
- Nagao, T.; Warnakulasuriya, S. Screening for oral cancer: Future prospects, research and policy development for Asia. Oral Oncol. 2020, 105, 104632. [Google Scholar] [CrossRef]
- Sugerman, P.B.; Sabage, N. Oral lichen planus: Causes, diagnosis and management. Aust. Dent. J. 2002, 47, 290–297. [Google Scholar] [CrossRef]
- Velleuer, E.; Dietrich, R.; Pomjanski, N.; de Santana Almeida Araujo, I.K.; Sroka, I.; Biesterfeld, S.; Bcöking, A.; Schramm, M. Diagnostic accuracy of brush biopsy–based cytology for the early detection of oral cancer and precursors in Fanconi anemia. Cancer Cytopathol. 2020, 128, 403–413. [Google Scholar] [CrossRef]
- Kerr, A.R.; Robinson, M.E.; Meyerowitz, C.; Morse, D.E.; Aguilar, M.L.; Tomar, S.L.; Guerrero, L.; Caprio, D.; Kaste, L.M.; Makhija, S.K.; et al. Cues Utilized by dentists in the early detection of oral cancer and oral potentially malignant lesions: Findings from the National Dental Practice-Based Reseacrh Network. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 264–272. [Google Scholar] [CrossRef]
- Haron, N.; Zain, R.B.; Ramanathan, A.; Abraham, M.T.; Liew, C.S.; Ng, K.G.; Cheng, L.C.; Husin, R.B.; Chong, S.M.Y.; Thangavalu, L.A.; et al. m-Health for Early Detection of Oral Cancer in Low- and Middle-Income Countries. Telemed. E-Health 2020, 26, 278–285. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Halboub, E.; Warnakulasuriya, S. Impact of COVID-19 on the early detection of oral cancer: A special emphasis on high risk. Oral Oncol. 2020, 106, 104760. [Google Scholar] [CrossRef]
- Leuci, S.; Coppola, N.; Turkina, A.Y.; Bizzoca, M.E.; Maiorano, E.; Spagnuolo, G.; Mignogna, M.D. May VelScope Be Deemed an Opportunistic Oral Cancer Screening by General Dentists? A Pilot Study. J. Clin. Med. 2020, 9, 1754. [Google Scholar] [CrossRef]
- Nikolovski, B.; Monevska, D.P.; Popovska, M.; Nikolovska, V.R.; Minovska, A. Assessment of Clinical Examination Validity in Oral Cancer Risk Patients. Balk. J. Dent. Med. 2020, 24, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, L.; Kujan, O.; Farah, C.S. Optical fluorescence imaging in oral cancer and potentially malignant disorders: A systematic review. Oral Dis. 2019, 26, 491–510. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S. Oral potentially malignant disorders: A comprehensive review on clinical aspects and management. Oral Oncol. 2020, 102, 104550. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Zapf, A.; Kuehle, M.; Gellrich, N.-C.; Eckardt, A. Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection. Eur. J. Cancer Prev. 2012, 21, 460–466. [Google Scholar] [CrossRef]
- Wilder-Smith, P.; Ajdaharian, J. Oral Diagnosis; Springer: Berlin/Heidelberg, Germany, 2020; Volume 4. [Google Scholar]
- Lingen, M.W.; Kalmar, J.R.; Karrison, T.G.; Speight, P.M. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008, 44, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Lewis, B. “Oral Screening and Lesion Identification Systems”, Aetna better Heal. Pennsylvania. 2019. Available online: https://www.aetnabetterhealth.com/pennsylvania/assets/pdf/pharmacy/pharmacy-bulletins/0760%20Oral%20Screening%20and%20Lesion%20Identification%20Systems.pdf (accessed on 11 October 2020).
- Shrivastava, N.; Tyagi, V. Multistage Content-Based Image Retrieval. Multistage content-based image retrieval. In Proceedings of the CSI Sixth International Conference on Software Engineering (CONSEG), Indore, India, 5–7 September 2012. [Google Scholar]
- Perner, P. Case-Based Reasoning on Images and Signals; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Elizabeth, D.; Raj, C.R.; Nehemiah, H.; Kannan, A. Computer-aided diagnosis of lung cancer based on analysis of the significant slice of chest computed tomography image. IET Image Process. 2012, 6, 697–705. [Google Scholar] [CrossRef]
- Anderson, S. Target classification, recognition and identification with HF radar. Symp. Target classif. 2004. Available online: https://d1wqtxts1xzle7.cloudfront.net/41716139/MP-SET-080-25.pdf?1454057614=&response-content-disposition=inline%3B+filename%3DTarget_Classification_Recognition_and_Id.pdf&Expires=1602399941&Signature=ILQTeFvke7qXGeZstrKcMeX5rFxW0QWT4o2Jeb0k1HfZZCFRa-~sRzJ2noW0BJOYUT-gGAmGVoh1PtDOzEDw~anktFX~jV4uDgNg6JMW-pdoZ6nFsfrGkyTbMBtTGe-zYUfpY4NsmztZXkfqOgH3aOGtC~gosr3BE~FfAKRmD1DjEKi3KYBLPMfuj1oZUBCZzI~rr48mULFyN4Zz5UApfN00KFFznOHNwntqQzfeJgcIgIwh-KfHzfL3Mb65ZKii4I73G8ThKVmWT4G9t3trWDi32BOoH8GvldxdWN0WEXGecsDDhXT1x2~mL7OibJLKu-qPznpatSlR7VE7YvBdBQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 11 October 2020).
- Zhu, X.; Huang, J.; Zhou, Q. Apparel image matting and applications in e-commerce. In Proceedings of the 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 20–22 August 2011; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2011; Volume 2, pp. 278–282. [Google Scholar]
- Zheng, R.; Wen, S.; Zhang, Q.; Jin, H.; Xie, X. Compounded Face Image Retrieval Based on Vertical Web Image Retrieval. In Proceedings of the 2011 Sixth Annual Chinagrid Conference, Liaoning, China, 22–23 August 2011; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2011; pp. 130–135. [Google Scholar]
- Tomita, F.; Tsuji, S. Statistical Texture Analysis. Comput. Anal. Vis. Textures 1990, 2, 13–36. [Google Scholar]
- Scott Froum, D. 10 Steps to Perform an Oral Cancer Screening. Dentistryiq. 2015. Available online: https://www.dentistryiq.com/dentistry/oral-cancer/article/16350620/10-steps-to-perform-an-oral-cancer-screening (accessed on 29 September 2020).
- Mehrotra, R.; Gupta, D.K. Exciting new advances in oral cancer diagnosis: Avenues to early detection. Head Neck Oncol. 2011, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Niyogi, S.; Priyadarshini, S. Non-Invasive Chairside Diagnostic Techniques: A Review. Indian J. Public Heal. Res. Dev. 2019, 10, 289. [Google Scholar] [CrossRef]
- Bhatia, N.; Lalla, Y.; Vu, A.N.; Farah, C.S. Advances in Optical Adjunctive Aids for Visualisation and Detection of Oral Malignant and Potentially Malignant Lesions. Int. J. Dent. 2013, 2013, 194029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balevi, B. Evidence-based decision making: Should the general dentist adopt the use of the VELscope for routine screening for oral cancer? J. Can. Dent. Assoc. 2007, 73, 603–606. [Google Scholar] [PubMed]
- Lane, P.M.; Gilhuly, T.; Whitehead, P.; Zeng, H.; Poh, C.F.-Y.; Ng, S.; Williams, P.M.; Zhang, L.; Rosin, M.P.; Macaulay, C.E. Simple device for the direct visualization of oral-cavity tissue fluorescence. J. Biomed. Opt. 2006, 11, 024006. [Google Scholar] [CrossRef] [PubMed]
- Awan, K.H.; Morgan, P.R.; Warnakulasurya, S. Evaluation of an autofluorescence based imaging system (VELscopeTM) in the detection of oral potentially malignant disorders and benign keratoses. Oral Oncol. 2007, 47, 274–277. [Google Scholar] [CrossRef]
- Morgan, D. Oral Surgeons and the VELscope System: Partners in Early Detection & Diagnosis. 2006. Available online: http://www.dentistrytoday.com/oral-medicine/1526 (accessed on 20 September 2020).
- Jeng, M.-J.; Sharma, M.; Chao, T.-Y.; Li, Y.-C.; Huang, S.-F.; Chang, L.-B.; Chow, L. Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis. PLoS ONE 2020, 15, e0228132. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.W.; Hwang, S.H. Autofluorescence imaging to identify oral malignant orpremalignant lesions: Systematic review and meta-analysis. Head Neck 2020, 1–9. [Google Scholar] [CrossRef]
- Tajiri, H.; Kobayashi, M. 3438 Detection of early gastric cancer by a real-time autofluorescence imaging system. Gastrointest. Endosc. 2000, 51, AB92. [Google Scholar] [CrossRef]
- Feng, P.-H.; Chen, T.-T.; Lin, Y.-T.; Chiang, S.-Y.; Lo, C.-M. Classification of lung cancer subtypes based on autofluorescence bronchoscopic pattern recognition: A preliminary study. Comput. Methods Programs Biomed. 2018, 163, 33–38. [Google Scholar] [CrossRef]
- Krishnan, M.M.R.; Chakraborty, C.; Ray, A.K. Wavelet based texture classification of oral histopathological sections. Microsc. Sci. Technol. Appl. Educ. 2010, 2, 897–906. [Google Scholar]
- Huang, T.-T.; Huang, J.-S.; Wang, Y.-Y.; Chen, K.-C.; Wong, T.-Y.; Chen, Y.-C.; Wu, C.-W.; Chan, L.-P.; Lin, Y.-C.; Kao, Y.-H.; et al. Novel quantitative analysis of autofluorescence images for oral cancer screening. Oral Oncol. 2017, 68, 20–26. [Google Scholar] [CrossRef]
- Anuradha, K. Statistical features extraction to classify oral cancer. J. Glob. Res. Comput. Sci. 2013, 4, 8–12. [Google Scholar]
- Hawlick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar]
- Nikoo, H.; Talebi, H.; Mirzaei, A. A Supervised Method for Determining Displacement of Gray Level Co-Occurrence Matrix. In Proceedings of the 7th Iranian Conference on Machine Vision and Image Processing, Tehran, Iran, 16–17 November 2011. [Google Scholar]
- Hossain, K.; Parekh, R.; Paruya, S.; Kar, S.; Roy, S. Extending GLCM to include Color Information for Texture Recognition. AIP Conf. Proc. 2010, 1298, 583–588. [Google Scholar] [CrossRef]
- Sharma, N.; Verma, A. Performance Comparison of Texture based Approach for Identification of Regions in Satellite Image. Int. J. Comput. Appl. 2013, 74, 10–15. [Google Scholar] [CrossRef]
- Zulpe, N.; Pawar, V. GLCM textural features for Brain Tumor Classification. Int. J. Comput. Sci. Issues 2012, 9, 354–359. [Google Scholar]
- James, A.P.; Dasarathy, B.V. Medical image fusion: A survey of the state of the art. Inf. Fusion 2014, 19, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Zare, M.R.; Mueen, A.; Seng, W.C. Automatic Medical X-ray Image Classification using Annotation. J. Digit. Imaging 2013, 27, 77–89. [Google Scholar] [CrossRef] [Green Version]
- LED Dental Inc. Fluorescence Visualization Technology. LED 0101 REV G. 2016. Available online: https://www.vineyardvalleydental.com/docs/VELSCOPE.pdf (accessed on 10 May 2020).
- Fourie, J. VELscope: Shedding light on its ideal application. South Afr. Dent. J. 2018, 73, 71–77. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Khunteta, A. Semantic Segmentation of Brain Tumor from MRI Images and SVM Classification using GLCM Features. In Proceedings of the Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020. [Google Scholar]
- Mohanaiah, P.; Sathyanarayana, P.; Gurukumar, L. Image Texture Feature Extraction Using GLCM Approach. Int. J. Sci. Res. Publ. 2013, 3, 1–5. [Google Scholar]
- Zhang, X.; He, D.; Zheng, Y.; Huo, H.; Li, S.; Chai, R.; Liu, T. Deep learning based analysis of breast cancer using advanced ensemble classifier and linear discriminant analysis. IEEE Access 2020, 8, 120208–120217. [Google Scholar] [CrossRef]
- Sifaou, H.; Kammoun, A.; Alouini, M.-S. High-dimensional Linear Discriminant Analysis Classifier for Spiked Covariance Model. J. Mach. Learn. Res. 2020, 21, 1–24. [Google Scholar]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175. [Google Scholar] [CrossRef] [Green Version]
- Temir, A.; Artykbayev, K.; Demirci, M.F. Image classification by Distortion-Free Graph Embedding and KNN-Random forest. In Proceedings of the 17th Conference on Computer and Robot Vision (CRV), Ottawa, ON, Canada, 13–15 May 2020; 2020. [Google Scholar]
- Zhang, S.; Wu, Y.; Chang, J. Survey of Image Recognition Algorithms. In Proceedings of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; pp. 542–548. [Google Scholar] [CrossRef]
- Bourennane, E.-B.; Gouton, P.; Paindavoine, M.; Truchetet, F. Generalization of Canny–Deriche filter for detection of noisy exponential edge. Signal Process. 2002, 82, 1317–1328. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Li, Q. Defect detection for tire laser shearography image using curvelet transform based edge detector. Opt. Laser Technol. 2013, 47, 64–71. [Google Scholar] [CrossRef]
- Ahmed, F.; Hossain, E. Automated Facial Expression Recognition Using Gradient-Based Ternary Texture Patterns. Chin. J. Eng. 2013, 2013, 831747. [Google Scholar] [CrossRef] [Green Version]
- Orjuela Vargas, S.A.; Yañez Puentes, J.P.; Philips, W. Local Binary Patterns: New Variants and New Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zhang, T.; Jia, W.; He, X.; Yang, J. Discriminative Dictionary Learning with Motion Weber Local Descriptor for Violence Detection. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 696–709. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Liang, L.-L.; Li, Y.-W.; Yang, H.-Y. Image retrieval based on exponent moments descriptor and localized angular phase histogram. Multimed. Tools Appl. 2016, 76, 7633–7659. [Google Scholar] [CrossRef]
- Yang, B.; Chen, S. A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing 2013, 120, 365–379. [Google Scholar] [CrossRef]
- Manjunatha, S.B.; Guruprasad, A.M.; Vineesh, P. Face Analysis By Local Directional Number Pattern. Int. J. Eng. Res. Gen. Sci. 2015, 3, 1400–1410. [Google Scholar]
- Clausi, A.D. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote. Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Rivera, A.R.; Castillo, J.R.; Chae, O.O. Local Directional Number Pattern for Face Analysis: Face and Expression Recognition. IEEE Trans. Image Process. 2012, 22, 1740–1752. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Alkhatib, W. Robust 2D Face Recognition Under Different Illuminations Using Binarized Partial Face Features: Towards Protecting ID Documents. Lect. Notes Comput. Sci. 2015, 8915, 31–43. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, L.; Qiu, W.; Zhou, Y.; Wu, M. Local gradient patterns (LGP): An effective local-statistical-feature extraction scheme for no-reference image quality assessment. Inf. Sci. 2017, 397–398, 1–14. [Google Scholar] [CrossRef]
- Ahonen, T.; Rahtu, E.; Ojansivu, V.; Heikkilä, J. Recognition of blurred faces using Local Phase Quantization. In Proceedings of the 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008. [Google Scholar]
- Satapathy, S.C. Ganapati Panda Electromagnetics and Telecommunications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Murala, S.; Maheshwari, R.P.; Balasubramanian, R.; Maheshwari, R.P. Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval. IEEE Trans. Image Process. 2012, 21, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, L.; Shiu, S.C.K.; Zhang, L. Monogenic Binary Coding: An Efficient Local Feature Extraction Approach to Face Recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1738–1751. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Ahonen, T.; Pietikäinen, M.; Li, S.Z. Local frequency descriptor for low-resolution face recognition. Face Gesture 2011 2011, 161–166. [Google Scholar] [CrossRef]
- Ferraz, C.T.; Pereira, O.; Gonzaga, A. Feature description based on Mean Local Mapped Pattern, X Work. Visão Comput. WVC 2014, 10, 32–37. [Google Scholar]
- Ganga, R.S.; Gundre, D.; Bansal, S.; Shirsat, P.M.; Prasad, P.; Desai, R.S. Evaluation of the diagnostic efficacy and spectrum of autofluorescence of benign, dysplastic and malignant lesions of the oral cavity using VELscope. Oral Oncol. 2017, 75, 67–74. [Google Scholar] [CrossRef]
- Scheer, M.; Fuss, J.; Derman, M.A.; Kreppel, M.; Neugebauer, J.; Rothamel, D.; Drebber, U.; Zoeller, J.E. Autofluorescence imaging in recurrent oral squamous cell carcinoma. Oral Maxillofac. Surg. 2015, 20, 27–33. [Google Scholar] [CrossRef]
- Farah, C.S.; McIntosh, L.; Georgiou, A.; McCullough, M.J. Efficacy of tissue autofluorescence imaging (velscope) in the visualization of oral mucosal lesions. Head Neck 2011, 34, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, R.; Singh, M.; Thomas, S.; Nair, P.; Pandya, S.; Nigam, N.S.; Shukla, P. A Cross-sectional study evaluating chemiluminescence and autofluorescence in the detection of clinically innocuous precancerous and cancerous oral lesions. J. Am. Dent. Assoc. 2010, 141, 151–156. [Google Scholar] [CrossRef] [PubMed]
Diagnosis | No. of Images | |
---|---|---|
Clinical Diagnosis | 1. Homogenous leukoplakia | 5 |
2. Non-homogenous leukoplakia | 5 | |
3. Oral lichen planus | 9 | |
4. Squamous cell carcinoma | 1 | |
5. Non-OPMDs (ulcers, abscesses, geographic tongue, frictional lesions, median rhomboid glossitis, pyogenic granuloma) | 10 | |
Total | 30 | |
Histopathological Diagnosis | 1. Mild dysplasia | 5 |
2. Moderate epithelial dysplasia | 4 | |
3. Oral lichen planus | 10 | |
4. Squamous cell carcinoma | 1 | |
5. Others (ulcers, abscesses, geographic tongue, epithelial hyperkeratosis, epithelial hyperplasia, median rhomboid glossitis, pyogenic granuloma) | 10 | |
Total | 30 |
Exposure Mode | Manual |
---|---|
F-Stop | 5–4 (approx.) |
Lens aperture | 0.02 |
ISO | 1600 |
Flare | zero |
Focal point | manual |
White balance | default |
Parameters | Ranked LDA Measure Values | Feature Names |
---|---|---|
1 | 4 | Variance |
2 | 3.7 | Sum average |
3 | 3 | Inverse difference moment |
4 | 2.7 | Sum variance |
5 | 2.1 | Entropy |
6 | 1.7 | Difference entropy |
7 | 1.4 | Sum entropy |
8 | 1.1 | Correlation |
9 | 0 | Contrast |
10 | 0 | Measure of co-relation |
Parameters # | Sensitivity | Specificity | Accuracy |
---|---|---|---|
1 | 40 ± 20 | 45 ± 20 | 50 ± 25 |
1, 2 | 60 ± 25 | 50 ± 20 | 50 ± 25 |
1, 2, 3 | 53 ± 20 | 55 ± 20 | 54 ± 15 |
1, 2, 3, 4 | 65 ± 18 | 70 ± 15 | 65 ± 17 |
1, 2, 3, 4, 5 | 70 ± 21 | 50 ± 24 | 60 ± 22 |
1, 2, 3, 4, 5, 6 | 72 ± 17 | 74 ± 15 | 70 ± 17 |
1, 2, 3, 4, 5, 6, 7 | 78 ± 10 | 79 ± 8 | 73 ± 13 |
1, 2, 3, 4, 5, 6, 7, 8 | 85 ± 5 | 84 ± 3 | 83 ± 5 |
1, 2, 3, 4, 5, 6, 7, 8, 9 | 50 ± 27 | 45 ± 20 | 45 ± 10 |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | 40 ± 30 | 30 ± 15 | 39 ± 16 |
Texture Descriptors | Specificity | Sensitivity | Accuracy |
---|---|---|---|
GDP | 53 ± 20 | 55 ± 20 | 54 ± 15 |
GDP2 | 65 ± 18 | 70 ± 15 | 65 ± 17 |
GLTP | 70 ± 21 | 50 ± 24 | 60 ± 22 |
IWLD | 72 ± 17 | 74 ± 15 | 70 ± 17 |
LAP | 70 ± 21 | 50 ± 24 | 60 ± 22 |
LBP | 72 ± 17 | 74 ± 15 | 70 ± 17 |
LDIP | 53 ± 20 | 55 ± 20 | 54 ± 15 |
LDIPV | 65 ± 18 | 70 ± 15 | 65 ± 17 |
IDN | 70 ± 21 | 50 ± 24 | 60 ± 22 |
LDNP | 72 ± 17 | 74 ± 15 | 70 ± 17 |
LGIP | 65 ± 18 | 70 ± 15 | 65 ± 17 |
LGP | 70 ± 21 | 50 ± 24 | 60 ± 22 |
LPQ | 72 ± 17 | 74 ± 15 | 70 ± 17 |
LTEP | 53 ± 20 | 55 ± 20 | 54 ± 15 |
LTrP | 65 ± 18 | 70 ± 15 | 65 ± 17 |
MBC | 70 ± 21 | 50 ± 24 | 60 ± 22 |
LFD | 72 ± 17 | 74 ± 15 | 70 ± 17 |
LMP | 72 ± 17 | 74 ± 15 | 70 ± 17 |
Authors | Investigation Principle | Oral Pathology | ROI Screening ⩔ | Statistical Analysis |
---|---|---|---|---|
Ganga et al. [76] | Conventional oral examination vs. VELscope® method | Evaluate the effectiveness of the VELscope® in recognizing dysplastic and/or neoplastic changes in oral mucosal lesions that were identified on conventional oral examination | Manual | Specificity = 76% Sensitivity = 76% |
Scheer et al. [77] | VELscope® | Oral squamous cell carcinomas | Manual | Sensitivity = 33.3% Specificity = 88.6% |
Farah et al. [78] | VELscope® | Oral potentially malignant disorders | Manual | Sensitivity = 30% Specificity = 63% |
Awan et al. [32] | VELscope® and conventional oral examination | Oral leukoplakia, oral erythroplakia, oral lichen planus, and oral sub-mucous fibrosis | Manual | Sensitivity = 84.1% Specificity = 15.3% |
Mehrotra et al. [79] | VELscope® vs. ViziLite ® | Oral squamous cell carcinomas | Manual | Sensitivity = 50% Specificity = 38.9% |
Our proposed algorithm | VELscope® vs. textural analysis approach | Oral squamous cell carcinomas, oral leukoplakia, oral erythroplakia, oral lichen planus, oral sub-mucous fibrosis, epithelial dysplasia lesions, and mild dysplasia lesions | Automatic | Sensitivity = 85 ± 5% Specificity = 84 ± 3% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, M.; Ghayvat, H.; Krishnan Pandarathodiyil, A.; Nabillah Ghani, W.M.; Ramanathan, A.; Pandya, S.; Walter, N.; Saad, M.N.; Zain, R.B.; Faye, I. Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging. Sensors 2020, 20, 5780. https://doi.org/10.3390/s20205780
Awais M, Ghayvat H, Krishnan Pandarathodiyil A, Nabillah Ghani WM, Ramanathan A, Pandya S, Walter N, Saad MN, Zain RB, Faye I. Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging. Sensors. 2020; 20(20):5780. https://doi.org/10.3390/s20205780
Chicago/Turabian StyleAwais, Muhammad, Hemant Ghayvat, Anitha Krishnan Pandarathodiyil, Wan Maria Nabillah Ghani, Anand Ramanathan, Sharnil Pandya, Nicolas Walter, Mohamad Naufal Saad, Rosnah Binti Zain, and Ibrahima Faye. 2020. "Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging" Sensors 20, no. 20: 5780. https://doi.org/10.3390/s20205780
APA StyleAwais, M., Ghayvat, H., Krishnan Pandarathodiyil, A., Nabillah Ghani, W. M., Ramanathan, A., Pandya, S., Walter, N., Saad, M. N., Zain, R. B., & Faye, I. (2020). Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging. Sensors, 20(20), 5780. https://doi.org/10.3390/s20205780