Development of a Diagnosis and Evaluation System for Hemiplegic Patients Post-Stroke Based on Motion Recognition Tracking and Analysis of Wrist Joint Kinematics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Box and Block Test (BBT)
2.3. Study Designs and Development Environments
2.4. Statistical Analysis
3. Results
3.1. Evaluation System for Motion Tracking Analysis
3.2. Quantitative Comparison between System BBT and Conventional BBT
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, S.; Duan, S. Interactive Metronome Applied in the Rehabilitative Treatment of the Central Nervous System. Chin. J. Tissue Eng. Res. 2017, 21, 2619–2624. [Google Scholar]
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing Populations: The Challenges Ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef] [Green Version]
- Langhorne, P.; Coupar, P.; Pollock, A. Motor Recovery After Stroke: A Systematic Review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Nakayma, H.; Jørgensen, H.S.; Raaschou, H.O.; Olsen, T.S. Compensation in Recovery of Upper Extremity Function after Stroke: The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1994, 75, 852–857. [Google Scholar] [CrossRef]
- Wang, Z.-R.; Wang, P.; Xing, L.; Mei, L.-P.; Zhao, J.; Zhang, T. Leap Motion-Based Virtual Reality Training for Improving Motor Functional Recovery of Upper Limbs and Neural Reorganization in Subacute Stroke Patients. Neural. Regen. Res. 2017, 12, 1823. [Google Scholar] [PubMed]
- Kwakkel, G.; Wagenaar, R.C.; Kollen, B.J.; Lankhorst, G.J. Predicting Disability in Stroke—A Critical Review of the Literature. Age Ageing 1996, 25, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Nichols-Larsen, D.S.; Clark, P.C.; Zeringue, A.; Greenspan, A.; Blanton, S. Factors Influencing Stroke Survivors’ Quality of Life During Subacute Recovery. Stroke 2005, 36, 1480–1484. [Google Scholar] [CrossRef]
- Barreca, S.; Wolf, S.L.; Fasoli, S.; Bohannon, R. Treatment Interventions for the Paretic Upper Limb of Stroke Survivors: A Critical Review. Neurorehabil. Neural Repair 2003, 17, 220–226. [Google Scholar] [CrossRef]
- Wolf, S.L.; Winstein, C.J.; Miller, P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K.E.; Nichols-Larsen, D.; EXCITE Investigators. Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months After Stroke: The EXCITE Randomized Clinical Trial. JAMA 2006, 296, 2095–2104. [Google Scholar] [CrossRef]
- Juntorn, S.; Sriphetcharawut, S.; Munkhetvit, P. Effectiveness of Information Processing Strategy Training on Academic Task Performance in Children with Learning Disabilities: A Pilot Study. Occup. Ther. Int. 2017, 2017, 6237689. [Google Scholar] [CrossRef] [Green Version]
- Brunnstrom, S. Motor Testing Procedures in Hemiplegia: Based on Sequential Recovery Stages. Phys. Ther. 1966, 46, 357–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, B.; Kunkel, A.; Mühlnickel, W.; Villringer, K.; Taub, E.; Flor, H. Plasticity in the Motor System Related to Therapy-Induced Improvement of Movement after Stroke. Neuroreport 1999, 10, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Taub, E.; Uswatte, G.; Pidikiti, R. Constraint-Induced Movement Therapy: A new Family of Techniques with Broad Application to Physical Rehabilitation-A Clinical Review. J. Rehabil. Res. Dev. 1999, 36, 237–251. [Google Scholar] [PubMed]
- Jutai, J.W.; Teasell, R.W. The Necessity and Limitations of Evidence-Based Practice in Stroke Rehabilitation. Top. Stroke Rehabil. 2003, 10, 71–78. [Google Scholar] [CrossRef]
- Teasell, R.; Mayer, M.J.; McClure, A.; Pan, C.; Murie–Fernandez, M.; Foley, N.; Salter, K. Stroke Rehabilitation: An International Perspective. Top. Stroke Rehabil. 2009, 16, 44–56. [Google Scholar] [CrossRef]
- Kaber, D.; Tupler, L.A.; Clamann, M.; Gil, G.-H.; Zhu, B.; Swangnetr, M.; Jeon, W.; Zhang, Y.; Qin, X.; Ma, W.; et al. Evaluation of an Augmented Virtual Reality and Haptic Control Interface for Psychomotor Training. Assist. Technol. 2014, 26, 51–60. [Google Scholar] [CrossRef]
- Saposnik, G.; Levin, M.; Outcome Research Canada (SORCan) Working Group. Virtual Reality in Stroke Rehabilitation: A Meta-Analysis and Implications for Clinicians. Stroke 2011, 42, 1380–1386. [Google Scholar] [CrossRef]
- Kim, Y.M.; Chun, M.H.; Yun, G.J.; Song, Y.J.; Young, H.E. The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients. Ann. Rehabil. Med. 2011, 35, 309. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual Reality for Stroke Rehabilitation. Stroke 2012, 43, e20–e21. [Google Scholar] [CrossRef]
- Tsoupikova, D.; Stoykov, N.S.; Corrigan, M.; Thielbar, K.; Vick, R.; Li, Y.; Triandafilou, K.; Preuss, F.; Kamper, D. Virtual Immersion for Post-Stroke Hand Rehabilitation Therapy. Ann. Biomed. Eng. 2015, 43, 467–477. [Google Scholar] [CrossRef]
- Jang, S.H.; You, S.H.; Hallett, M.; Cho, Y.W.; Park, C.-M.; Cho, S.-H.; Lee, H.-Y.; Kim, T.-H. Cortical Reorganization and Associated Functional Motor Recovery after Virtual Reality in Patients with Chronic Stroke: An Experimenter-Blind Preliminary Study. Arch. Phys. Med. Rehabil. 2005, 86, 2218–2223. [Google Scholar] [CrossRef]
- Merians, A.S.; Tunik, E.; Adamovich, S.V. Virtual Reality to Maximize Function for Hand and Arm Rehabilitation: Exploration of Neural Mechanisms. Stud. Health Technol. Inform. 2009, 145, 109. [Google Scholar] [PubMed]
- Carey, J.R.; Kimberley, T.J.; Lewis, S.M.; Auerback, E.J.; Dorsey, L.; Rundquist, P.; Ugurbil, K. Analysis of Fmri and Finger Tracking Training in Subjects with Chronic Stroke. Brain 2002, 125, 773–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iosa, M.; Morone, G.; Fusco, A.; Castagnoli, M.; Fusco, F.R.; Pratesi, L.; Paolucci, S. Leap Motion Controlled Videogame-Based Therapy for Rehabilitation of Elderly Patients with Subacute Stroke: A Feasibility Pilot Study. Top. Stroke Rehabil. 2015, 22, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Avola, D.; Bernardi, M.; Cinque, L.; Foresti, G.L.; Massaroni, C. Exploiting Recurrent Neural Networks and Leap Motion Controller for the Recognition of Sign Language and Semaphoric Hand Gestures. IEEE Trans. Multimedia 2018, 21, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.W.; Regazzoni, D. Hand Rehabilitation Assessment System using Leap Motion Controller. AI Soc. 2019, 126, 1–14. [Google Scholar]
- Smeragliuolo, A.H.; Hill, N.J.; Disla, L.; Putrino, D. Validation of the Leap Motion Controller using Markered Motion Capture Technology. J. Biomech. 2016, 49, 1742–1750. [Google Scholar] [CrossRef]
- Chophuk, P.; Chumpen, S.; Tungjitkusolmun, S.; Phasukkit, P. Hand postures for evaluating trigger finger using leap motion controller. In Proceedings of the 8th Biomedical Engineering International Conference (BMEiCON 2015), Pattaya, Thailand, 25–27 November 2015. [Google Scholar]
- Alimanova, M.; Borambayeva, S.; Kozhamzharova, D.; Kurmangaiyeva, N.; Ospanova, D.; Tyulepberdinova, G.; Gaziz, G.; Kassenkhan, A. Gamification of hand rehabilitation process using virtual reality tools: Using leap motion for hand rehabilitation. In Proceedings of the First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017. [Google Scholar]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Mathiowetz, V.; Federman, S.; Wiemer, D. Box and Block Test of Manual Dexterity: Norms for 6–19 Year Olds. Can. J. Occup. Ther. 1985, 52, 241–245. [Google Scholar] [CrossRef]
- Chung, J.-M.; Ha, T.; Jo, S.W.; Kyong, T.; Park, S.Y. Augmented Reality based Low Power Consuming Smartphone Control Scheme. KSII Trans. Internet Inf. Syst. 2017, 11, 5168–5181. [Google Scholar]
- Yao, D.; Park, D.-W.; An, S.-O.; Kim, S.K. Development of Augmented Reality Indoor Navigation System based on Enhanced A* Algorithm. KSII Trans. Internet Inf. Syst. 2019, 13, 4606–4623. [Google Scholar]
- Guna, J.; Jakus, G.; Pogacnik, M.; Tomazic, S. An Analysis of the Precision and Reliability of the Leap Motion Sensor and its Suitability for Static and Dynamic Tracking. Sensors 2014, 14, 3702–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilk, K.E.; Arrigo, C.A.; Andrews, J.R. Closed and Open Kinetic Chain Exercise for the Upper Extremity. J. Sport Rehabil. 1996, 5, 88–102. [Google Scholar] [CrossRef]
- Ros, T.; Munneke, M.A.M.; Ruge, D.; Gruzelier, J.H.; Rothwell, J.C. Endogenous Control of Waking Brain Rhythms Induces Neuroplasticity in Humans. Eur. J. Neurosci. 2010, 31, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Nishida, S.; Shirai, H. A Qualitative Study to Explore Ways to Observe Results of Engaging Activities in Clients with Dementia. Occup. Ther. Int. 2017, 2017, 7513875. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Kim, M.; Lee, O. An Extended Kalman Filter for Mouse Tracking. Med. Biol. Eng. Comput. 2018, 56, 2109–2123. [Google Scholar] [CrossRef]
- Lee, K.; Kim, M.; Lee, O.; Kim, K. Roughness Preserving Filter Design to Remove Spatial Noise from Stereoscopic Skin Images for Stable Haptic Rendering. Skin Res. Technol. 2017, 23, 407–415. [Google Scholar] [CrossRef]
- Feldman, D.E. Synaptic Mechanisms for Plasticity in Neocortex. Annu. Rev. Neurosci. 2009, 32, 33–55. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, S.; Lee, O. Development of a Diagnosis and Evaluation System for Hemiplegic Patients Post-Stroke Based on Motion Recognition Tracking and Analysis of Wrist Joint Kinematics. Sensors 2020, 20, 4548. https://doi.org/10.3390/s20164548
Kim S, Park S, Lee O. Development of a Diagnosis and Evaluation System for Hemiplegic Patients Post-Stroke Based on Motion Recognition Tracking and Analysis of Wrist Joint Kinematics. Sensors. 2020; 20(16):4548. https://doi.org/10.3390/s20164548
Chicago/Turabian StyleKim, Subok, Seoho Park, and Onseok Lee. 2020. "Development of a Diagnosis and Evaluation System for Hemiplegic Patients Post-Stroke Based on Motion Recognition Tracking and Analysis of Wrist Joint Kinematics" Sensors 20, no. 16: 4548. https://doi.org/10.3390/s20164548
APA StyleKim, S., Park, S., & Lee, O. (2020). Development of a Diagnosis and Evaluation System for Hemiplegic Patients Post-Stroke Based on Motion Recognition Tracking and Analysis of Wrist Joint Kinematics. Sensors, 20(16), 4548. https://doi.org/10.3390/s20164548