Real-Time and Accurate Drone Detection in a Video with a Static Background
Abstract
:1. Introduction
1.1. Drone Detection Modalities
1.1.1. Radar-Based Drone Detection
1.1.2. Acoustic-Based Drone Detection
1.1.3. RF-Based Drone Detection
1.1.4. Camera-Based Drone Detection
1.1.5. Bi- and Multimodal Drone Detection Systems
1.2. Related Work
1.2.1. UAV Detection and Classification
1.2.2. Drone-vs.-Bird Challenge
2. Proposed Approach
2.1. Background Subtraction Method
Moving Objects Detection
2.2. CNN Image Classification
Moving Objects Classification
3. Experiments and Results
3.1. Data Preparation
3.2. Training
3.3. Evaluation Metrics
3.4. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
COCO | Common Objects in Context |
DPM | Deformable Parts Model |
DCSCN | Deep CNN with Skip Connection and Network in Network |
FPN | Feature Pyramid Network |
FPS | Frames per Second |
GFD | Generic Fourier Descriptor |
GPU | Graphics Processing Unit |
HOG | Histogram of Oriented Gradients |
IoU | Intersection over Union |
KCF | Kernelized Correlation Filter |
LBP | Local Binary Pattern |
LSTM | Long short-term memory |
MPEG4 | Moving Picture Experts Group |
RAM | Random-access memory |
ReLU | Rectified linear unit |
RF | Radio Frequency |
RGB | Red, Green and Blue |
R-CNN | Region-based Convolutional Neural Network |
ROC | Receiver operating characteristic |
RPN | Region Proposal Network |
SAR | Search and Rescue |
SIFT | Scale-Invariant Feature Transform |
SGD | Stochastic Gradient Descent |
SSD | Single Shot Detector |
SVM | Support Vector Machine |
UAS | Unmanned Aerial System |
UAV | Unmanned Aerial Vehicle |
USC | University of Southern California |
VGG | Visual Geometry Group |
VOC | Visual Object Classes |
YOLO | You Only Look Once |
References
- Jansen, B. Drone Crash at White House Reveals Security Risks. USA Today. 26 January 2015. Available online: https://www.usatoday.com/story/news/2015/01/26/drone-crash-secret-service-faa/22352857/.
- Pham, S. Drone Hits Passenger Plane in Canada. CNN. Available online: https://money.cnn.com/2017/10/16/technology/drone-passenger-plane-canada/index.html. (accessed on 16 October 2017).
- Guardian, T. Gatwick Drone Disruption Cost Airport Just £1.4 m. The Guardian. Available online: https://www.theguardian.com/uk-news/live/2018/dec/21/gatwick-drone-airport-limited-flights-live. (accessed on 21 December 2018).
- Walker, D. Report: Trio Planned to Use Drone to Get Tobacco, Phones to Inmate. Available online: https://www.northwestgeorgianews.com/report-trio-planned-to-use-drone-to-to-get-tobacco-phones-to-inmate/article_44c25a12-7d96-11ea-8c97-73fe94e065d4.html (accessed on 13 April 2020).
- Coluccia, A.; Saqib, M.; Sharma, N.; Blumenstein, M.; Magoulianitis, V.; Ataloglou, D.; Dimou, A.; Zarpalas, D.; Daras, P.; Craye, C.; et al. Drone-vs-Bird Detection Challenge at IEEE AVSS2019. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019. [Google Scholar]
- Wu, M.; Xie, W.; Shi, X.; Shao, P.; Shi, Z. Real-Time Drone Detection Using Deep Learning Approach. In Proceedings of the 2018 of the 3rd international conference, MLICOM, Hangzhou, China, 6–8 July 2018; pp. 22–32. [Google Scholar]
- Taha, B.; Shoufan, A. Machine Learning-Based Drone Detection and Classification: State-of-the-Art in Research. IEEE Access 2019, 7, 138669–138682. [Google Scholar] [CrossRef]
- Hamatapa, R.; Vongchumyen, C. Image Processing for Drones Detection. In Proceedings of the 2019 5th the ICEAST, Luang Prabang, Laos, 2–5 July 2019. [Google Scholar]
- Samaras, S.; Diamantidou, E.; Ataloglou, D.; Sakellariou, N.; Vafeiadis, A.; Magoulianitis, V.; Lalas, A.; Dimou, A.; Zarpalas, D.; Votis, K.; et al. Deep Learning on Multi Sensor Data for Counter UAV Applications—A Systematic Review. Sensors 2019, 19, 4837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kim, D.H.; Shin, Y.S.; Lee, S. A Comparison of Convolutional Object Detectors for Real-time Drone Tracking Using a PTZ Camera. In Proceedings of the ICCAS, Jeju, South Korea, 18–21 October 2017. [Google Scholar]
- Shi, W.; Arabadjis, G.; Bishop, B.; Hill, P.; Plasse, R.; Yoder, J. Sensor Fusion—Foundation and Applications; Thomas, C., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Unlu, E.; Zenou, E.; Riviere, N.; Dupouy, P. Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques. In Proceedings of the IEEE AERO, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar]
- Craye, C.; Ardjoune, S. Spatio-temporal Semantic Segmentation for Drone Detection. In Proceedings of the AVSS, Taipei, Taiwan, 18–21 September 2019. [Google Scholar]
- Shin, S.; Park, S.; Kim, Y.; Matson, E.T. Design and Analysis of Cost-efficient Sensor Deployment for 608 Tracking Small UAS with Agent-based Modeling. Integration of Sensors in Complex, Intelligent Systems Selected Papers from the CHARMS 2015 Workshop. Sensors 2016, 16, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wei, Z.; Chen, Y.; Pan, J.; Lin, L.; Ren, Y. Drone Detection Based on an Audio-Assisted Camera Array. In Proceedings of the IEEE BigMM, Laguna Hills, CA, USA, 19–21 April 2017; pp. 402–406. [Google Scholar]
- Caris, M.; Johannes, W.; Stanko, S.; Pohl, N. Millimeter Wave Radar for Perimeter Surveillance and Detection of MAVs (Micro Aerial Vehicles). In Proceedings of the IEEE IRS, Dresden, Germany, 24–26 June 2015. [Google Scholar]
- Park, S.; Shin, S.; Kim, Y.; Matson, E.; Lee, K.; Kolodzy, P.J.; Slater, J.C.; Scherreik, M.; Sam, M.; Gallagher, J.C.; et al. Combination of radar and audio sensors for identification of rotor-type unmanned aerial vehicles (UAVs). In Proceedings of the IEEE SENSORS, Busan, South Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Hengy, S.; Laurenzis, M.; Schertzer, S.; Hommes, A.; Kloeppel, F.; Shoykhetbrod, A.; Geibig, T.; Johannes, W.; Rassy, O.; Christnacher, F. Multimodal UAV detection: Study of various intrusion scenarios. In Proceedings of the Electro-Optical Remote Sensing XI, Warsaw, Poland, 5 October 2017. [Google Scholar]
- Charvat, G.L.; Fenn, A.J.; Perry, B.T. The MIT IAP radar course: Build a small radar system capable of sensing range, Doppler, and synthetic aperture (SAR) imaging. In Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 138–144. [Google Scholar]
- Unlu, E.; Zenou, E.; Rivière, N. Using Shape Descriptors for UAV Detection. In Electronic Imaging; Burlingam, CA, USA; Available online: https://oatao.univ-toulouse.fr/19612/ (accessed on 21 March 2017).
- Wang, Z.; Qi, L.; Tie, Y.; Ding, Y.; Bai, Y. Drone detection based on FD-HOG descriptor. In Proceedings of the International Conference on Cyber Enabled Distributed Computing and Knowledge Discovery, Zhengzhou, China, 18–20 October 2018. [Google Scholar]
- Yoshihashi, R.; Kawakami, R.; Iida, M.; Naemura, T. Construction of a bird image dataset for ecological investigations. In Proceedings of the ICIP, Quebec City, QC, Canada, 27–30 September 2015; pp. 4248–4252. [Google Scholar]
- Chen, Y.; Aggarwal, P.; Choi, J.; Kuo, C.J. A Deep Learning Approach to Drone Monitoring. arXiv:1712.00863 [cs.CV]. Available online: https://arxiv.org/pdf/1712.00863.pdf. (accessed on 17 December 2017).
- Peng, J.; Zheng, C.; Lv, P.; Cui, T.; Cheng, Y.; Si, L. Using Images Rendered by PBRT to Train Faster R-CNN for UAV Detection. Comput. Sci. Res. Notes 2018. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, X.; Zheng, G.; Liu, X. Object Detection of UAV for Anti-UAV Based on Improved YOLO v3. In Proceedings of the CCC, Guanzhou, China, 27 July 2019; pp. 8386–8390. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. ArXiv.org. vol. abs/1804.02767. Available online: https://arxiv.org/pdf/1804.02767.pdf (accessed on 18 April 2018).
- Nalamati, M.; Kapoor, A.; Saqib, M.; Sharma, N.; Blumenstein, M. Drone Detection in Long-range Surveillance Videos. In Proceedings of the AVSS, Taipei, Taiwan, 18–21 September 2019. [Google Scholar]
- He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of tricks for image classification with convolutional neural networks. In Proceedings of the IEEE/CVF CVPR, Long Beach, CA, USA, 16–21 June 2019; pp. 558–567. [Google Scholar]
- Magoulianitis, V.; Ataloglou, D.; Dimou, A.; Zarpalas, D.; Daras, P. Does Deep Super-Resolution Enhance UAV Detection? In Proceedings of the AVSS, Taipei, Taiwan, 18–21 September 2019. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs.CV]. Available online: https://arxiv.org/pdf/1512.03385.pdf (accessed on 15 December 2015).
- Muhammad, S.; Sharma, N.; Khan, S.D.; Blumenstein, M. A study on detecting drones using deep convolutional neural networks. In Proceedings of the AVSS, Lecce, Italy, 29 August–1 September 2017. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the NIPS, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Aker, C.; Kalkan, S. Using deep networks for drone detection. In Proceedings of the AVSS, Lecce, Italy, 29 August–1 September 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv:1612.08242 [cs.CV]. Available online: https://arxiv.org/pdf/1612.08242.pdf. (accessed on 25 December 2016).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- de la Iglesia, D.; Méndez, M.; Dosil, R.; González, I. Drone detection CNN for close- and long-range surveillance in mobile applications. In Proceedings of the AVSS, Taipei, Taiwan, 18–21 September 2019. [Google Scholar]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE ICCV, Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Ye, D.H.; Li, J.; Chen, Q.; Wachs, J.P.; Bouman, C.A. Deep Learning for Moving Object Detection and Tracking from a Single Camera in Unmanned Aerial Vehicles (UAVs). Electron. Imaging 2018, 10, 466-1–466-6. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, S.; Kuwashima, S.; Kurita, T. Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. Presented at the ICONIP. Available online: https://arxiv.org/ftp/arxiv/papers/1707/1707.05425.pdf (accessed on 18 July 2017).
- Schumann, A.; Sommer, L.; Klatte, J.; Schuchert, T.; Beyerer, J. Deep cross-domain flying object classification for robust UAV detection. In Proceedings of the AVSS, Lecce, Italy, 29 August–1 September 2017. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs.CV]. Available online: https://arxiv.org/pdf/1505.04597.pdf (accessed on 18 May 2015).
- Arunachalam, S.T.; Shahana, R.; Vijayasri, R.; Kavitha, T. Flying object detection and classification using deep neural networks. IJETT 2019, 67. [Google Scholar]
- Andrewssobral/Bgslibrary. Available online: https://github.com/andrewssobral/bgslibrary (accessed on June 2013).
- Dertat, A. Applied Deep Learning—Part 4: Convolutional Neural Networks. Available online: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2 (accessed on 8 November 2017).
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv:1704.04861 [cs.CV]. Available online: https://arxiv.org/pdf/1704.04861.pdf (accessed on 17 April 2017).
- Dertat, A. Review: MobileNetV2—Light Weight Model (Image Classification). Available online: https://towardsdatascience.com/review-mobilenetv2-light-weight-model-image-classification-8febb490e61c (accessed on 19 May 2019).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE/CVF CVPR, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Park, S.; Kim, Y.; Lee, K.; Smith, A.; Dietz, J.; Matson, E.T. Accessible real-time surveillance radar system for object detection. Sensors 2020, 20, 2215. [Google Scholar] [CrossRef]
- Huyvnphan/PyTorch_CIFAR10. Available online: https://github.com/huyvnphan/PyTorch-CIFAR10 (accessed on 1 June 2020).
- Yoshihashi, R.; Trinh, T.; Kawakami, R.; You, S.; Iida, M.; Naemura, T. Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects. {arXiv}:1709.04666 [cs.CV]. Available online: https://arxiv.org/pdf/1709.04666.pdf. (accessed on 17 September 2018).
- Flach, P.A. The geometry of ROC space: Understanding machine learning metrics through ROC isometrics. In Proceedings of the ICML, Washington, DC, USA, 3–8 December 2003; pp. 194–201. [Google Scholar]
- Everingham, M.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 2010, 88, 3338. [Google Scholar] [CrossRef] [Green Version]
Video Name | Precision | Recall | F1-Score |
---|---|---|---|
gopro_001 | 0.786 | 0.817 | 0.801 |
gopro_004 | 0.554 | 0.910 | 0.689 |
gopro_006 | 0.735 | 0.691 | 0.712 |
Overall | 0.701 | 0.788 | 0.742 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidaliyeva, U.; Akhmetov, D.; Ilipbayeva, L.; Matson, E.T. Real-Time and Accurate Drone Detection in a Video with a Static Background. Sensors 2020, 20, 3856. https://doi.org/10.3390/s20143856
Seidaliyeva U, Akhmetov D, Ilipbayeva L, Matson ET. Real-Time and Accurate Drone Detection in a Video with a Static Background. Sensors. 2020; 20(14):3856. https://doi.org/10.3390/s20143856
Chicago/Turabian StyleSeidaliyeva, Ulzhalgas, Daryn Akhmetov, Lyazzat Ilipbayeva, and Eric T. Matson. 2020. "Real-Time and Accurate Drone Detection in a Video with a Static Background" Sensors 20, no. 14: 3856. https://doi.org/10.3390/s20143856
APA StyleSeidaliyeva, U., Akhmetov, D., Ilipbayeva, L., & Matson, E. T. (2020). Real-Time and Accurate Drone Detection in a Video with a Static Background. Sensors, 20(14), 3856. https://doi.org/10.3390/s20143856