Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30CrMo Steel Curved Plates
Abstract
:1. Introduction
2. Theoretical Background
2.1. Guided Wave Propagation in Curved Plate
2.2. Dispersion Characteristics of Guided Waves in 30CrMo Steel Curved Plates
2.3. Ellipse-Based Damage Localization Method
3. Methodology
3.1. Online Structural Health Monitoring System
3.2. Experimental and Simulation Method
4. Results and Discussion
4.1. Comparison between Experimental and Simulation Results
4.2. Notch Depth Effect on Guide Wave Characteristics
4.3. Notch Orientation Effect on Guided Wave Characteristics
4.4. Curved Plate Radius Effect on Guided Wave Characteristics
4.5. Notch Localization in 30CrMo Steel Curved Plates by Ellipse-Based Algorithm
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nejad, M.Z.; Jabbari, M.; Ghannad, M. Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading. Compos. Struct. 2015, 122, 561–569. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Sun, X.; Li, H.; Meng, G. Propagation of guided waves in pressure vessel. Wave Motion 2015, 52, 216–228. [Google Scholar] [CrossRef]
- Wang, B.L.; Guo, Y.B.; Zhang, C.W. Cracking and thermal shock resistance of a Bi2Te3 based thermoelectric material. Eng. Fract. Mech. 2016, 152, 1–9. [Google Scholar] [CrossRef]
- Guo, S.L.; Wang, B.L.; Zhang, C. Thermal shock fracture mechanics of a cracked solid based on the dual-phase-lag heat conduction theory considering inertia effect. Theor. Appl. Fract. Mech. 2016, 86, 309–316. [Google Scholar] [CrossRef]
- Dubal, S.; Kadam, H. Pressure Vessel Accidents: Safety Approach. Int. Res. J. Eng. Technol. 2017, 04, 125–128. [Google Scholar]
- Xiao, B.; Yang, B.; Xuan, F.Z.; Wan, Y.; Hu, C.; Jin, P.; Lei, H.; Xiang, Y.; Yang, K. In-Situ Monitoring of a Filament Wound Pressure Vessel by the MWCNT Sensor under Hydraulic Fatigue Cycling and Pressurization. Sensors 2019, 19, 1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Chaves-Vargas, M.; Yang, J.; Schröder, K.U. A baseline-free structural damage indicator based on node displacement of structural mode shapes. J. Sound Vib. 2018, 433, 366–384. [Google Scholar] [CrossRef]
- Raghavan, A. Guided-Wave Structural Health Monitoring; University of Michigan: Ann Arbor, MI, USA, 2007. [Google Scholar]
- Wolcken, P.C.; Papadopoulos, M. Smart Intelligent Aircraft Structures; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Wang, H.; Hu, R.; Xie, J.; Tong, T. Comparative Study on Buffeting Performance of Sutong Bridge Based on Design and Measured Spectrum. J. Bridge Eng. 2013, 18, 587–600. [Google Scholar] [CrossRef]
- Ji, L.; Zhong, J. Runyang Suspension Bridge over the Yangtze River. Struct. Eng. Int. 2006, 16, 194–199. [Google Scholar] [CrossRef]
- Senyurek, V.Y. Detection of cuts and impact damage at the aircraft wing slat by using Lamb wave method. Measurement 2015, 67, 10–23. [Google Scholar] [CrossRef]
- Hall, J.S.; Fromme, P.; Michaels, J.E. Guided Wave Damage Characterization via Minimum Variance Imaging with a Distributed Array of Ultrasonic Sensors. J. Nondestruct. Eval. 2014, 33, 299–308. [Google Scholar] [CrossRef]
- Cho, H.; Lissenden, C.J. Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves. Struct. Health Monit. 2011, 11, 393–404. [Google Scholar] [CrossRef]
- Singh, D.; Castaings, M.; Bacon, C. Sizing strip-like defects in plates using guided waves. NDT E Int. 2011, 44, 394–404. [Google Scholar] [CrossRef]
- Fletcher, S.; Lowe, M.J.S.; Ratassepp, M.; Brett, C. Detection of Axial Cracks in Pipes Using Focused Guided Waves. J. Nondestruct. Eval. 2012, 31, 56–64. [Google Scholar] [CrossRef]
- Gavigan, B.J.; Zhang, L.; Sun, Z.; Rose, J.L. Experimental Phased Array Focusing in Pipe Using Ultrasonic Guided Waves. J. Press. Vessel Technol. 2005, 128, 433. [Google Scholar]
- Crom, B.L.; Castaings, M. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J. Acoust. Soc. Am. 2015, 127, 2220. [Google Scholar] [CrossRef]
- Yu, J.G.; Wu, B.; He, C.F. Characteristics of guided waves in graded spherical curved plates. Int. J. Solids Struct. 2007, 44, 3627–3637. [Google Scholar]
- Castaings, M.; Hosten, B. Ultrasonic guided waves for health monitoring of high-pressure composite tanks. NDT E Int. 2008, 41, 648–655. [Google Scholar] [CrossRef]
- Yang, B.; Xiang, Y.; Xuan, F.Z.; Hu, C.; Xiao, B.; Zhou, S.; Luo, C. Damage localization in hydrogen storage vessel by guided waves based on a real-time monitoring system. Int. J. Hydrogen Energy 2019, 44, 22740–22751. [Google Scholar] [CrossRef]
- Granacher, J.; Klenk, A.; Tramer, M.; Schellenberg, G.; Mueller, F.; Ewald, J. Creep fatigue crack behavior of two power plant steels. Int. J. Press. Vessels Pip. 2001, 78, 909–920. [Google Scholar] [CrossRef]
- Gridin, D.; Craster, R.V. Lamb quasi–modes in curved plates. Math. Phys. Eng. Sci. 2004, 460, 1831–1847. [Google Scholar] [CrossRef]
- Pavlakovic, B.; Lowe, M.; Alleyne, D.; Cawley, P. Disperse: A General Purpose Program for Creating Dispersion Curves. Rev. Prog. Quant. Nondestruct. Eval. 1996, 16, 185–192. [Google Scholar]
- Qiu, L.; Yuan, S.; Mei, H.; Qian, W. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method. Sensors 2013, 13, 13356–13381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.; Giurgiutiu, V.; Pollock, P. Durability and Survivability of Piezoelectric Wafer Active Sensors on Metallic Structure. AIAA J. 2010, 48, 635–643. [Google Scholar] [CrossRef]
- Maio, L.; Ricci, F.; Memmolo, V.; Boffa, N.D.; Monaco, E.; Mal, A.K.; Schaal, C. Laser doppler velocimetry and pzt sensing for the study of guided waves in a stepped aluminum plate. In Proceedings of the Health Monitoring of Structural and Biological Systems 2017, Portland, OR, USA, 25–29 March 2017. [Google Scholar] [CrossRef] [Green Version]
- Yücel, M.K.; Legg, M.; Kappatos, V.; Gan, T.H. An ultrasonic guided wave approach for the inspection of overhead transmission line cables. Appl. Acoust. 2017, 122, 23–34. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, X.; Ding, S.; Huo, Y. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements. J. Nucl. Mater. 2010, 399, 41–54. [Google Scholar] [CrossRef]
- Drozdz, M.B. Efficient Finite Element Modelling of Ultrasound Waves in Elastic Media; Imperial College London: London, UK, 2008; Unpublished work. [Google Scholar]
- Travaglini, C.; Bescond, C.; Viens, M.; Belanger, P. Feasibility of high frequency guided wave crack monitoring. Struct. Health Monit. 2017, 16, 418–427. [Google Scholar] [CrossRef]
- Ta, D.; Huang, K.; Wang, W.; Wang, Y.; Le, L.H. Identification and analysis of multimode guided waves in tibia cortical bone. Ultrasonics 2006, 44, 279–284. [Google Scholar] [CrossRef]
- Hong, M.; Su, Z.; Wang, Q.; Cheng, L.; Qing, X. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: Theory, simulation, and experimental validation. Ultrasonics 2014, 54, 770–778. [Google Scholar] [CrossRef]
- Ong, W.H.; Chiu, W.K. Numerical modelling of scattered Lamb waves through varied damage size in challenging geometry. Struct. Health Monit. Int. J. 2013, 12, 278–295. [Google Scholar] [CrossRef]
- Ziaja-Sujdak, A.; Cheng, L.; Radecki, R.; Staszewski, W.J. Near-field wave enhancement and ‘quasi-surface’ longitudinal waves in a segmented thick-walled hollow cylindrical waveguide. Struct. Health Monit. 2017, 17, 346–362. [Google Scholar] [CrossRef]
Item | Density/kg/m3 | Modulus/MPa | Poisson’s Ratio | Diameter/mm | Thickness/mm |
---|---|---|---|---|---|
Value | 7850 | 211,000 | 0.279 | 325 | 5 |
Radius/mm | Material | Length/mm | Thickness/mm | Notch Depth/mm |
---|---|---|---|---|
122.5, 142.5, 162.5, 182.5, 202.5, 300 | 30CrMo steel | 500 | 5 | 5 |
Notch Depth/mm | Circumferential Error | Axial Error | Average Error |
---|---|---|---|
1 | 1.51% | 1.43% | 1.47% |
2 | 1.05% | 0.85% | 0.95% |
3 | 0.90% | 0.90% | 0.90% |
4 | 0.50% | 0.60% | 0.55% |
5 | 0.01% | 0 | 0.005% |
Radius/mm | Circumferential Error | Axial Error | Average Error |
---|---|---|---|
122.5 | 2.02% | 0.38% | 1.20% |
142.5 | 0.95% | 0.73% | 0.84% |
182.5 | 1.37% | 0.69% | 1.03% |
202.5 | 0.67% | 1.16% | 0.92% |
300 | 0.36% | 0.86% | 0.61% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Yang, B.; Xuan, F.-Z.; Yan, J.; Xiang, Y. Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30CrMo Steel Curved Plates. Sensors 2020, 20, 849. https://doi.org/10.3390/s20030849
Hu C, Yang B, Xuan F-Z, Yan J, Xiang Y. Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30CrMo Steel Curved Plates. Sensors. 2020; 20(3):849. https://doi.org/10.3390/s20030849
Chicago/Turabian StyleHu, Chaojie, Bin Yang, Fu-Zhen Xuan, Jianjun Yan, and Yanxun Xiang. 2020. "Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30CrMo Steel Curved Plates" Sensors 20, no. 3: 849. https://doi.org/10.3390/s20030849
APA StyleHu, C., Yang, B., Xuan, F.-Z., Yan, J., & Xiang, Y. (2020). Damage Orientation and Depth Effect on the Guided Wave Propagation Behavior in 30CrMo Steel Curved Plates. Sensors, 20(3), 849. https://doi.org/10.3390/s20030849