Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review
Abstract
:1. Introduction
Basics of the Signal Analysis of EDA
2. Methods
3. Results
3.1. EDA Data Collection: Recording Devices and Electrodes
3.1.1. Endosomatic versus Exosomatic Recordings
3.1.2. DC versus AC Sources in Exosomatic Recordings
3.1.3. Basic Considerations on Electrodes for EDA Measurements
3.1.4. Advances in Technologies for EDA Data Collection
3.2. EDA Signal Processing: Techniques for Performing Data Decomposition and Analysis
3.2.1. Tools for Scoring EDA and Recording Contextual Information
3.2.2. Automatic Scoring of EDA
Tonic/Phasic Decomposition of EDA
Spectral Analysis of EDA
Other Approaches for Decomposition and Scoring of EDA
3.3. EDA Quality
3.3.1. Motion Artifacts Detection and Correction
3.3.2. Variability and Repeatability of Measures of EDA
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cacioppo, J.T.; Tassinary, L.G.; Berntson, G. Handbook of Psychophysiology, 3rd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; ISBN 978-0-521-84471-0. [Google Scholar]
- Martin, I.; Venables, P.H. Techniques in Psychophysiology; Psychological Medicine; John Wiley & Sons: Chichester, UK, 1980; Volume 10, p. 806. [Google Scholar]
- Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Roth, W.T.; Dawson, M.E.; Filion, D.L.; Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures. Publication recommendations for electrodermal measurements. Psychophysiology 2012, 49, 1017–1034. [Google Scholar] [PubMed]
- Greenfield, N.S.; Sternbach, R.A. Handbook of Psychophysiology; Holt, Rinehart & Winston: Oxford, UK, 1972; Volume xii. [Google Scholar]
- Shields, S.A.; MacDowell, K.A.; Fairchild, S.B.; Campbell, M.L. Is mediation of sweating cholinergic, adrenergic, or both? A comment on the literature. Psychophysiology 1987, 24, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Ellaway, P.H.; Kuppuswamy, A.; Nicotra, A.; Mathias, C.J. Sweat production and the sympathetic skin response: Improving the clinical assessment of autonomic function. Auton. Neurosci. 2010, 155, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illigens, B.M.W.; Gibbons, C.H. Sweat testing to evaluate autonomic function. Clin. Auton. Res. 2009, 19, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U. Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 410–417. [Google Scholar] [CrossRef]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Edelberg, R. Electrodermal Mechanisms: A Critique of the Two-Effector Hypothesis and a Proposed Replacement. In Progress in Electrodermal Research; Roy, J.-C., Boucsein, W., Fowles, D.C., Gruzelier, J.H., Eds.; NATO ASI Series; Springer: New York, NY, USA, 1993; pp. 7–29. ISBN 978-1-4613-6241-8. [Google Scholar]
- Christie, M.J. Electrodermal activity in the 1980s: A review. J. R. Soc. Med. 1981, 74, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Posada-Quintero, H. Electrodermal Activity: What It Can Contribute to the Assessment of the Autonomic Nervous System. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2016. [Google Scholar]
- Wallin, B.G. Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology 1981, 18, 470–476. [Google Scholar] [CrossRef]
- Sequeira, H.; Roy, J.-C. Cortical and Hypothalamo-Limbic Control of Electrodermal Responses. In Progress in Electrodermal Research; Roy, J.-C., Boucsein, W., Fowles, D.C., Gruzelier, J.H., Eds.; NATO ASI Series; Springer: New York, NY, USA, 1993; pp. 93–114. ISBN 978-1-4613-6241-8. [Google Scholar]
- Roy, J.-C.; Sequeira, H.; Delerm, B. Neural Control of Electrodermal Activity: Spinal and Reticular Mechanisms. In Progress in Electrodermal Research; Roy, J.-C., Boucsein, W., Fowles, D.C., Gruzelier, J.H., Eds.; NATO ASI Series; Springer: Boston, MA, USA, 1993; pp. 73–92. ISBN 978-1-4613-6241-8. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer: Boston, MA, USA, 2012; ISBN 978-1-4614-1125-3. [Google Scholar]
- Davidson, R.J. Psychophysiology: The Mind–Body Perspective; Hugdahl, K., Ed.; Harvard University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. Chapter 7: The Electrodermal System. In Handbook of Psychophysiology; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 159–181. [Google Scholar]
- Grings, W.W. Recording of electrodermal phenomena. Methods Physiol. Psychol. 1974, 1, 273–296. [Google Scholar]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Reljin, N.; Mills, C.; Mills, I.; Florian, J.P.; VanHeest, J.L.; Chon, K.H. Time-varying analysis of electrodermal activity during exercise. PLoS ONE 2018, 13, e0198328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowles, D.C.; Christie, M.J.; Edelberg, R.; Grings, W.W.; Lykken, D.T.; Venables, P.H. Committee report. Publication recommendations for electrodermal measurements. Psychophysiology 1981, 18, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Lowry, R. Active circuits for direct lenear measurement of skin resistance and conductance. Psychophysiology 1977, 14, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Grimnes, S.; Jabbari, A.; Martinsen, Ø.G.; Tronstad, C. Electrodermal activity by DC potential and AC conductance measured simultaneously at the same skin site. Skin Res. Technol. 2011, 17, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Nordbotten, B.J.; Tronstad, C.; Martinsen, Ø.G.; Grimnes, S. Estimation of skin conductance at low frequencies using measurements at higher frequencies for EDA applications. Physiol. Meas. 2014, 35, 1011–1018. [Google Scholar] [CrossRef]
- Pabst, O.; Tronstad, C.; Grimnes, S.; Fowles, D.; Martinsen, Ø.G. Comparison between the AC and DC measurement of electrodermal activity. Psychophysiology 2017, 54, 374–385. [Google Scholar] [CrossRef]
- Lim, D.-W.; Park, J.-R.; Choi, M.-H.; Lee, S.-J.; Choi, J.-S.; Kim, H.-S.; Yi, J.-H.; Tack, G.-R.; Lee, B.; Chung, S.-C. Development of a magnetic resonance-compatible galvanic skin response measurement system using optic signal. Int. J. Neurosci. 2009, 119, 1337–1345. [Google Scholar] [CrossRef]
- Styliadis, C.; Papadelis, C.; Konstantinidis, E.; Ioannides, A.A.; Bamidis, P. An MEG compatible system for measuring skin conductance responses. J. Neurosci. Methods 2013, 212, 114–123. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, S.; Seo, S.; Park, K. Highly wearable galvanic skin response sensor using flexible and conductive polymer foam. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6631–6634. [Google Scholar]
- Posada-Quintero, H.F.; Rood, R.; Noh, Y.; Burnham, K.; Pennace, J.; Chon, K.H. Dry carbon/salt adhesive electrodes for recording electrodermal activity. Sens. Actuators A Phys. 2017, 257, 84–91. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Reyes, B.A.; Burnham, K.; Pennace, J.; Chon, K.H. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life. Ann. Biomed. Eng. 2015, 43, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
- Haddad, P.A.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors 2018, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, P.A.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection. IEEE Trans. Biomed. Eng. 2017, 64, 2979–2987. [Google Scholar]
- Lee, Y.; Lee, B.; Lee, M. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application. Telemed. J. E Health 2010, 16, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Poh, M.-Z.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar]
- Bahr, D.E.; Webster, J.G.; Grady, D.; Kronenberg, F.; Creasman, J.; Macer, J.; Shults, M.; Tyler, M.; Zhou, X. Miniature ambulatory skin conductance monitor and algorithm for investigating hot flash events. Physiol. Meas. 2014, 35, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Torniainen, J.; Cowley, B.; Henelius, A.; Lukander, K.; Pakarinen, S. Feasibility of an electrodermal activity ring prototype as a research tool. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6433–6436. [Google Scholar]
- Pope, G.C.; Halter, R.J. Design and Implementation of an Ultra-Low Resource Electrodermal Activity Sensor for Wearable Applications. Sensors 2019, 19, 2450. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.H.; Lee, S.M.; Lim, Y.G.; Park, K.S. Measuring skin conductance over clothes. Med. Biol. Eng. Comput. 2012, 50, 1155–1161. [Google Scholar] [CrossRef]
- Frantzidis, C.A.; Konstantinidis, E.; Pappas, C.; Bamidis, P.D. An automated system for processing electrodermal activity. Stud. Health Technol. Inform. 2009, 150, 787. [Google Scholar]
- Green, S.R.; Kragel, P.A.; Fecteau, M.E.; LaBar, K.S. Development and validation of an unsupervised scoring system (Autonomate) for skin conductance response analysis. Int. J. Psychophysiol. 2014, 91, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Ayzenberg, Y.; Picard, R.W. FEEL: A system for frequent event and electrodermal activity labeling. IEEE J. Biomed. Health Inform. 2014, 18, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, D.R.; Flandin, G.; Friston, K.J.; Dolan, R.J. Time-series analysis for rapid event-related skin conductance responses. J. Neurosci. Methods 2009, 184, 224–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PsPM | A Matlab Suite for Psycho-Physiological Modelling. Available online: http://pspm.sourceforge.net/ (accessed on 13 January 2020).
- SCRalyze | A Matlab Environment for Model-Based Psychophysiology. Available online: http://scralyze.sourceforge.net/ (accessed on 13 January 2020).
- Bach, D.R.; Flandin, G.; Friston, K.J.; Dolan, R.J. Modelling event-related skin conductance responses. Int. J. Psychophysiol. 2010, 75, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, D.R.; Friston, K.J.; Dolan, R.J. Analytic measures for quantification of arousal from spontaneous skin conductance fluctuations. Int. J. Psychophysiol. 2010, 76, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Bach, D.R.; Daunizeau, J.; Kuelzow, N.; Friston, K.J.; Dolan, R.J. Dynamic causal modeling of spontaneous fluctuations in skin conductance. Psychophysiology 2011, 48, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Bach, D.R.; Daunizeau, J.; Friston, K.J.; Dolan, R.J. Dynamic causal modelling of anticipatory skin conductance responses. Biol. Psychol. 2010, 85, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Benedek, M.; Kaernbach, C. Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 2010, 47, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Ledalab. Available online: http://www.ledalab.de/ (accessed on 13 January 2020).
- Bach, D.R. A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biol. Psychol. 2014, 103, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Bach, D.R.; Friston, K.J.; Dolan, R.J. An improved algorithm for model-based analysis of evoked skin conductance responses. Biol. Psychol. 2013, 94, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Chaspari, T.; Tsiartas, A.; Stein, L.I.; Cermak, S.A.; Narayanan, S.S. Sparse representation of electrodermal activity with knowledge-driven dictionaries. IEEE Trans. Biomed. Eng. 2015, 62, 960–971. [Google Scholar] [CrossRef] [Green Version]
- Bach, D.R.; Staib, M. A matching pursuit algorithm for inferring tonic sympathetic arousal from spontaneous skin conductance fluctuations. Psychophysiology 2015, 52, 1106–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- lciti. lciti/cvxEDA. Available online: https://github.com/lciti/cvxEDA (accessed on 13 January 2020).
- Jain, S.; Oswal, U.; Xu, K.S.; Eriksson, B.; Haupt, J. A Compressed Sensing Based Decomposition of Electrodermal Activity Signals. IEEE Trans. Biomed. Eng. 2017, 64, 2142–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.R.; Faghih, R.T. Sparse Deconvolution of Electrodermal Activity via Continuous-Time System Identification. IEEE Trans. Biomed. Eng. 2019, 66, 2585–2595. [Google Scholar] [CrossRef]
- Hernando-Gallego, F.; Luengo, D.; Artes-Rodriguez, A. Feature Extraction of Galvanic Skin Responses by Non-Negative Sparse Deconvolution. IEEE J. Biomed. Health Inform. 2017, 22, 1385–1394. [Google Scholar] [CrossRef]
- Gallego, F.H. fhernandogallego/sparsEDA. Available online: https://github.com/fhernandogallego/sparsEDA (accessed on 13 January 2020).
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, Á.D.; Chon, K.H. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R582–R591. [Google Scholar] [CrossRef] [Green Version]
- Ghiasi, S.; Grecol, A.; Nardelli, M.; Catrambonel, V.; Barbieri, R.; Scilingo, E.; Valenza, G. A New Sympathovagal Balance Index from Electrodermal Activity and Instantaneous Vagal Dynamics: A Preliminary Cold Pressor Study. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 3068–3071. [Google Scholar]
- Chaspari, T.; Tsiartas, A.; Stein Duker, L.I.; Cermak, S.A.; Narayanan, S.S. EDA-gram: Designing electrodermal activity fingerprints for visualization and feature extraction. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar] [CrossRef]
- Subramanian, S.; Barbieri, R.; Brown, E.N. A Point Process Characterization of Electrodermal Activity. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar] [CrossRef]
- Wickramasuriya, D.S.; Qi, C.; Faghih, R.T. A State-Space Approach for Detecting Stress from Electrodermal Activity. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar] [CrossRef]
- Ksander, J.C.; Kark, S.M.; Madan, C.R. Breathe Easy EDA: A MATLAB toolbox for psychophysiology data management, cleaning, and analysis. F1000Res 2018, 7, 216. [Google Scholar] [CrossRef]
- Crider, A.; Lunn, R. Electrodermal lability as a personality dimension. J. Exp. Res. Personal. 1971, 5, 145–150. [Google Scholar]
- Braithwaite, J.J.; Watson, D.G.; Jones, R.; Rowe, M. A Guide for Analysing Electrodermal Activity (EDA) & Skin Conductance Responses (SCRs) for Psychological Experiments; University of Birmingham: Birmingham, UK, 2013. [Google Scholar]
- Hernandez, J.; Morris, R.R.; Picard, R.W. Call Center Stress Recognition with Person-Specific Models. In Affective Computing and Intelligent Interaction; D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–134. [Google Scholar]
- Kocielnik, R.; Sidorova, N.; Maggi, F.M.; Ouwerkerk, M.; Westerink, J.H. Smart technologies for long-term stress monitoring at work. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; pp. 53–58. [Google Scholar]
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar]
- MIT Media Lab Affective Computing. Eda-Explorer; MIT Media Lab Affective Computing Group: Cambridge, MA, USA, 2019. [Google Scholar]
- Tronstad, C.; Staal, O.M.; Saelid, S.; Martinsen, O.G. Model-based filtering for artifact and noise suppression with state estimation for electrodermal activity measurements in real time. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015. [Google Scholar] [CrossRef]
- Chen, W.; Jaques, N.; Taylor, S.; Sano, A.; Fedor, S.; Picard, R.W. Wavelet-based motion artifact removal for electrodermal activity. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Kelsey, M.; Palumbo, R.V.; Urbaneja, A.; Akcakaya, M.; Huang, J.; Kleckner, I.R.; Barrett, L.F.; Quigley, K.S.; Sejdic, E.; Goodwin, M.S. Artifact detection in electrodermal activity using sparse recovery. In Compressive Sensing VI: From Diverse Modalities to Big Data Analytics; International Society for Optics and Photonics: The Hague, The Netherlands, 2017; Volume 10211, p. 102110D. [Google Scholar]
- Kleckner, I.R.; Jones, R.M.; Wilder-Smith, O.; Wormwood, J.B.; Akcakaya, M.; Quigley, K.S.; Lord, C.; Goodwin, M.S.; Kleckner, I.R.; Jones, R.M.; et al. Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data. IEEE Trans. Biomed. Eng. 2018, 65, 1460–1467. [Google Scholar] [CrossRef]
- iankleckner. iankleckner/EDAQA. Available online: http://www.cbslab.org/EDAQA (accessed on 13 January 2020).
- Sjouwerman, R.; Lonsdorf, T.B. Latency of skin conductance responses across stimulus modalities. Psychophysiology 2019, 56, e13307. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Dimitrov, T.; Moutran, A.; Park, S.; Chon, K.H. Analysis of Reproducibility of Noninvasive Measures of Sympathetic Autonomic Control Based on Electrodermal Activity and Heart Rate Variability. IEEE Access 2019, 7, 22523–22531. [Google Scholar] [CrossRef]
- Bari, D.S.; Aldosky, H.Y.Y.; Tronstad, C.; Kalvøy, H.; Martinsen, Ø.G. Electrodermal responses to discrete stimuli measured by skin conductance, skin potential, and skin susceptance. Skin Res. Technol. 2018, 24, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tronstad, C.; Kalvøy, H.; Grimnes, S.; Martinsen, Ø.G. Waveform difference between skin conductance and skin potential responses in relation to electrical and evaporative properties of skin. Psychophysiology 2013, 50, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 978-1-4614-1126-0. [Google Scholar]
- Chon, K.H.; Yang, B.; Posada-Quintero, H.F.; Siu, K.L.; Rolle, M.; Brink, P.; Birzgalis, A.; Moore, L.C. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice. J. Diabetes Sci. Technol. 2014, 8, 1157–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, G.; Esler, M. How to assess sympathetic activity in humans. J. Hypertens. 1999, 17, 719–734. [Google Scholar] [CrossRef]
- Schwartz, P.; La Rovere, M.; Vanoli, E. Assessment: Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 1996, 46, 873–880. [Google Scholar]
- Spallone, V.; Morganti, R.; Fedele, T.; D’Amato, C.; Maiello, M.R. Reappraisal of the diagnostic role of orthostatic hypotension in diabetes. Clin. Auton. Res. 2009, 19, 58–64. [Google Scholar] [CrossRef]
- Design News—Blog—Wearables Get Moody with the GSR Sensor. Available online: http://www.designnews.com/author.asp?section_id=1386&doc_id=277976 (accessed on 17 March 2016).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. https://doi.org/10.3390/s20020479
Posada-Quintero HF, Chon KH. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors. 2020; 20(2):479. https://doi.org/10.3390/s20020479
Chicago/Turabian StylePosada-Quintero, Hugo F., and Ki H. Chon. 2020. "Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review" Sensors 20, no. 2: 479. https://doi.org/10.3390/s20020479
APA StylePosada-Quintero, H. F., & Chon, K. H. (2020). Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors, 20(2), 479. https://doi.org/10.3390/s20020479