An Impact Location Algorithm for Spacecraft Stiffened Structure Based on Posterior Possibility Correlation
Abstract
:1. Introduction
2. Method
2.1. CCGPWL Algorithm
2.2. Posterior Probability Location Result Optimization Algorithm
3. Experiment Platform Setup
4. Results and Discussion
4.1. PLRs with the CCGPWL Algorithm
4.2. FLRs with the PPLSO Algorithm
4.3. The Influence of the Filter Frequency Band and the Sensor Network Scheme on Final Location Results
4.4. Comparison between the CCGPWL Algorithm and the TDOA Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shan, M.H.; Guo, J.; Gill, E. Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 2016, 80, 18–32. [Google Scholar] [CrossRef]
- Lear, D.; Hyde, J.; Christiansen, E.; Herrin, J.; Lyons, F. STS-118 radiator impact damage. Orbital Debris Q. News 2008, 12, 3–5. [Google Scholar]
- Sang, J.; Bennett, J.C. Achievable debris orbit prediction accuracy using laser ranging data from a single station. Adv. Space Res. 2014, 54, 119–124. [Google Scholar] [CrossRef]
- Lampariello, R.; Hirzinger, G. Generating Feasible Trajectories for Autonomous On-Orbit Grasping of Spinning Debris in a Useful Time. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2013 (IROS 13), Tokyo, Japan, 3–7 November 2013; pp. 5652–5659. [Google Scholar]
- Ewald, R. Is it worth the risk? –An astronaut’s approach to risk awareness. Acta Astronaut. 2019, 161, 368–372. [Google Scholar] [CrossRef]
- Yeager, M.; Whittaker, A.; Todd, M.; Kim, H.; Key, C.; Gregory, W. Impact detection and characterization in composite laminates with embedded fiber bragg gratings. Procedia Eng. 2017, 188, 156–162. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Kong, F.; Liu, W.G.; Li, H.B. A method for locating space debris impact source based on PVDF films. Astrophys. Space Sci. Proc. 2017, 47, 509–515. [Google Scholar]
- Ma, Z.; Chen, X. Fiber bragg gratings sensors for aircraft wing shape measurement: Recent applications and technical analysis. Sensors 2019, 19, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, X.; Zhang, Y.; Li, Y.; Gong, X.Y.; Jin, S.J. A new method of using sensor arrays for gas leakage location based on correlation of the time-space domain of continuous ultrasound. Sensors 2015, 15, 8266–8283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobias, A. Acoustic-emission source location in two dimensions by an array of three sensors. Non Destr. Test. 1976, 9, 9–12. [Google Scholar] [CrossRef]
- Holford, K.M.; Eaton, M.J.; Hensman, J.J.; Pullin, R.; Evans, S.L.; Dervilis, N.; Worden, K. A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview. Prog. Aerosp. Sci. 2017, 90, 1–11. [Google Scholar] [CrossRef]
- Kundu, T. Acoustic source localization. Ultrasonics 2014, 54, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Mohd, S.; Holford, K.M.; Pullin, R. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring. AIP Conf. Proc. 2014, 1584, 61–68. [Google Scholar]
- Ciampa, F.; Meo, M. A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1777–1786. [Google Scholar] [CrossRef]
- Sharif-Khodaei, Z.; Ghajari, M.; Aliabadi, M.H. Determination of impact location on composite stiffened panels. Smart Mater. Struct. 2012, 21, 105026. [Google Scholar] [CrossRef]
- Salamone, S.; Bartoli, I.; Rhymer, J.; Kim, H.; Lanza di Scalea, F. Validation of the Piezoelectric Rosette Technique for Locating Impacts in Complex Aerospace Panels. In Proceedings of the Health Monitoring of Structural and Biological Systems 2011, International Society for Optics and Photonics, San Diego, CJ, USA, 31 March 2011. [Google Scholar]
- Li, Y.B.; Wang, Z.; Rui, X.B.; Qi, L.; Liu, J.W.; Yang, Z. Impact location on a fan-ring shaped high-stiffened panel using adaptive energy compensation threshold filtering method. Appl. Sci. 2019, 9, 1763. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimkhanlou, A.; Salamone, S. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections. Ultrasonics 2017, 78, 134–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimkhanlou, A.; Salamone, S. A probabilistic framework for single-sensor acoustic emission source localization in thin metallic plates. Smart Mater. Struct. 2017, 26, 095026. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Salamone, S. Single-sensor acoustic emission source localization in plate-like structures using deep learning. Aerospace 2018, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimkhanlou, A.; Salamone, S. A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels. Mech. Syst. Signal Proc. 2019, 130, 248–272. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Length of the plate (mm) | 1000 | Height of the stiffener (mm) | 20 |
Width of the plate (mm) | 1000 | Thickness of the stiffener (mm) | 4 |
Thickness of the plate (mm) | 2.5 | Spacing of the stiffener (mm) | 200 |
Number. | Result | Error (cm) | Number | Result | Error (cm) |
---|---|---|---|---|---|
1 | (−19.5, 13.5) | 1.5811 | 6 | (−20.5, 14.5) | 0.7071 |
2 | (−19.5, 13.5) | 1.5811 | 7 | (−20.5, 13.5) | 1.5811 |
3 | (−20.5, 14.5) | 0.7071 | 8 | (−20.5, 15.5) | 0.7071 |
4 | (−19.5, 13.5) | 1.5811 | 9 | (−20.5, 14.5) | 0.7071 |
5 | (−20.5, 13.5) | 1.5811 | 10 | (−19.5, 13.5) | 1.5811 |
Impact Location | Average Value of PLRs Errors (cm) | FLR Error (cm) | Impact Location | Average Value of PLRs Errors (cm) | FLR Error (cm) |
---|---|---|---|---|---|
(−20, 15) | 1.00 | 1.06 | (20, −15) | 9.10 | 5.71 |
(−10, 10) | 9.54 | 2.37 | (10, −10) | 7.82 | 0.79 |
(−15, 5) | 8.12 | 2.85 | (15, −5) | 1.52 | 2.15 |
(0, 0) | 3.58 | 3.02 | (20, 15) | 1.00 | 1.06 |
(−20, −15) | 1.32 | 1.27 | (10, 10) | 5.85 | 5.39 |
(−10, −10) | 2.80 | 2.76 | (15, 5) | 4.60 | 4.25 |
(−15, −5) | 0.58 | 0.79 |
Impact Location | CCGPWL Average Error (cm) | TDOA Average Error (cm) | Impact Location | CCGPWL Average Error (cm) | TDOA Average Error (cm) |
---|---|---|---|---|---|
(−20, 15) | 1.23 | 55.99 (>50) | (20, −15) | 12.11 | 137.57 (>50) |
(−10, 10) | 8.31 | 3.44 | (10, −10) | 9.75 | 4.49 |
(−15, 5) | 14.54 | 148.43 (>50) | (15, −5) | 3.95 | 12.95 |
(0, 0) | 6.40 | 13.57 | (20, 15) | 1.15 | 207.53 (>50) |
(−20, −15) | 1.59 | 83.37 (>50) | (10, 10) | 6.69 | 14.12 |
(−10, −10) | 3.13 | 10.54 | (15, 5) | 6.13 | 68.13 (>50) |
(−15, −5) | 1.76 | 106.63 (>50) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Zeng, Z.; Sun, L.; Rui, X.; Fan, F.; Yue, G.; Zhao, Y.; Feng, H. An Impact Location Algorithm for Spacecraft Stiffened Structure Based on Posterior Possibility Correlation. Sensors 2020, 20, 368. https://doi.org/10.3390/s20020368
Qi L, Zeng Z, Sun L, Rui X, Fan F, Yue G, Zhao Y, Feng H. An Impact Location Algorithm for Spacecraft Stiffened Structure Based on Posterior Possibility Correlation. Sensors. 2020; 20(2):368. https://doi.org/10.3390/s20020368
Chicago/Turabian StyleQi, Lei, Zhoumo Zeng, Lichen Sun, Xiaobo Rui, Fan Fan, Guixuan Yue, Yueyang Zhao, and Hao Feng. 2020. "An Impact Location Algorithm for Spacecraft Stiffened Structure Based on Posterior Possibility Correlation" Sensors 20, no. 2: 368. https://doi.org/10.3390/s20020368
APA StyleQi, L., Zeng, Z., Sun, L., Rui, X., Fan, F., Yue, G., Zhao, Y., & Feng, H. (2020). An Impact Location Algorithm for Spacecraft Stiffened Structure Based on Posterior Possibility Correlation. Sensors, 20(2), 368. https://doi.org/10.3390/s20020368