Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Development
2.2. Smartphone-Based Balance Assessment
2.3. Reliability Test
2.4. Validity Test
3. Results
3.1. Reliability Test
3.2. Validity Test
4. Discussion
4.1. Difference between Existing Smartphone Applications
4.2. Accelerometer and Gyroscope
4.3. Feasibility of the Developed Application
4.4. Limitation
5. Further Investigation and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choi, J.-U.; Kang, S.-H. The effects of patient-centered task-oriented training on balance activities of daily living and self-efficacy following stroke. J. Phys. Ther. Sci. 2015, 27, 2985–2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagna, J.C.; Santos, B.C.; Battistuzzo, C.R.; Loureiro, A.P.C. Effects of aquatic physiotherapy on the improvement of balance and corporal symmetry in stroke survivors. Int. J. Clin. Exp. Med. 2014, 7, 1182–1187. [Google Scholar] [PubMed]
- Karasu, A.U.; Batur, E.B.; Karataş, E.B. Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study. J. Rehabil. Med. 2018, 50, 406–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.; Anson, D.; Haller, S. Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients. Arch. of Phys. Med. Rehabil. 1988, 69, 395–400. [Google Scholar]
- Alexander, C.H.G.; de Haart, M.; van Nes, I.J.W.; Duysens, J. A review of standing balance recovery from stroke. Gait Posture 2005, 22, 267–281. [Google Scholar]
- Rival, C.; Ceyte, H.; Olivier, I. Developmental changes of static standing balance in children. Neurosci. Lett. 2005, 376, 133–136. [Google Scholar] [CrossRef]
- Hendrickson, J.; Patterson, K.K.; Inness, E.L.; Mcllroy, W.E.; Mansfield, A. Relationship between asymmetry of quiet standing balance control and walking post-stroke. Gait Posture 2014, 39, 177–181. [Google Scholar] [CrossRef]
- Lloréns, R.; Noé, E.; Colomer, C.; Alcañiz, M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2015, 96, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Karthikbabu, S.; Chakrapani, M.; Ganesan, S.; Ellajosyula, R.; Solomon, J.M. Efficacy of trunk regimes on balance, mobility, physical function, and community reintegration in chronic stroke: A parallel-group randomized trial. J. Stroke Cerebrovasc. Dis. 2018, 27, 1003–1011. [Google Scholar] [CrossRef]
- Song, J.W.; Kim, J.M.; Cheong, Y.S.; Lee, Y.-S.; Chun, S.M.; Min, Y.-S.; Jung, T.-S. Balance assessment in subacute stroke patients using the balance control trainer (BalPro). Ann. Rehabil. Med. 2017, 41, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Saso, A.; Moe-Nilssen, R.; Gunnes, M.; Askim, T. Responsiveness of the berg balance scale in patients early after stroke. Physiother. Theory Pract. 2016, 32, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Sawacha, Z.; Carraro, E.; Contessa, P.; Guiotto, A.; Masiero, S.; Cobelli, C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J. Neuroeng. Rehabil. 2013, 10, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsaklis, P.V.; Grooten, W.J.A.; Franzén, E. Effects of weight-shift training on balance control and weight distribution in chronic stroke: A pilot study. Top. Stroke Rehabil. 2012, 19, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Kamen, G.; Patten, C.; Du, C.D.; Sison, S. An accelerometry-based system for the assessment of balance and postural sway. Gerontology 1998, 44, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, H.; Cheung, J.T. Gait-force model and inertial measurement unit-based measurements: A new approach for gait analysis and balance monitoring. J. Exerc. Sci. Fit. 2016, 14, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, L.; Giannoni, P.; Marinelli, L.; Casadio, M. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors. J. Neuroeng. Rehabil. 2017, 14, 107. [Google Scholar] [CrossRef]
- Ringhof, S.; Stein, T. Biomechanical assessment of dynamic balance: Specificity of different balance tests. Hum. Mov. Sci. 2018, 58, 140–147. [Google Scholar] [CrossRef]
- Mayagoitia, R.E.; Lötters, J.C.; Veltink, P.H.; Hermens, H. Standing balance evaluation using a triaxial accelerometer. Gait Posture 2002, 16, 55–59. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Helbostad, J.L. Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 2002, 16, 60–68. [Google Scholar] [CrossRef]
- Chiu, Y.-L.; Tsai, Y.-J.; Lin, C.-H.; Hou, Y.-R.; Sung, W.-H. Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability. Comput. Methods Programs Biomed. 2017, 139, 191–195. [Google Scholar] [CrossRef]
- Kuznetsov, N.A.; Robins, R.K.; Long, B.; Jakiela, J.T.; Haran, F.J.; Ross, S.E.; Wright, W.G.; Rhea, C.K. Validity and reliability of smartphone orientation measurement to quantify dynamic balance function. Physiol. Meas. 2018, 39, 02NT01. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Market Share Held by the Leading Smartphone Operating Systems in Sales to End Users from 1st Quarter 2009 to 2nd Quarter 2017. Stastista Web Site. Available online: https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/ (accessed on 28 July 2019).
- Sensors Overview. Android Developers Web Site. Available online: https://developer.android.com/guide/topics/sensors/sensors_overview.html (accessed on 28 July 2019).
- Hou, Y.-R.; Chiu, Y.-L.; Chiang, S.-L.; Chen, H.-Y. Feasibility of a smartphone-based balance assessment system for subjects with chronic stroke. Comput. Methods Programs Biomed. 2018, 161, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Gago, M.F.; Fernandes, V.; Ferreira, J.; Silva, H.; Rocha, L.; Bicho, E.; Sousa, N. Postural stability analysis with inertial measurement units in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. Extra 2014, 4, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roetenberg, D.; Höller, C.; Mattmüller, K.; Degen, M.; Allum, J.H. Comparison of a low-cost miniature inertial sensor module and a fiber-optic gyroscope for clinical balance and gait assessments. J. Healthc. Eng. 2019, 2019, 9816961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Google Play Application. YMED. 2011. Available online: https://play.google.com/store/apps/details?id=com.hyunc.rehatrain.balancecheck (accessed on 28 July 2019).
- Google Play Application. Concussion Assessment & Response Application. PAR Inc. Mobile. 2016. Available online: https://play.google.com/store/apps/details?id=com.parinc.firstresponder.sports_medicine (accessed on 28 July 2019).
- Mellone, S.; Tacconi, C.; Chiari, L. Validity of a smartphone-based instrumented timed up and go. Gait Posture 2012, 36, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-C.; Kim, J.; Chen, S.; Sienko, K.H. Cell phone based balance trainer. Neuroeng. Rehabil. 2012, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, J.A.; Amick, R.Z.; Thummar, T.; Rogers, M.E. Validation of measures from the smartphone sway balance application: A pilot study. Int. J. Sports Phys. Ther. 2014, 9, 135–139. [Google Scholar]
Sensors | Within-Day | Between-Day | ||||
---|---|---|---|---|---|---|
ICC | 95%CI | p Value | ICC | 95%CI | p Value | |
ACC | 0.904 | 0.844–0.941 | 0.00 ** | 0.764 | 0.615–0.856 | 0.00 ** |
GYR | 0.897 | 0.797–0.948 | 0.00 ** | 0.857 | 0.732–0.924 | 0.00 ** |
Healthy Group (n = 8) | Chronic Stroke Group (n = 8) | p Value | |
---|---|---|---|
Age, y/o, mean (SD) | 51.5 (9.0) | 52.3 (9.7) | 0.77 |
Height, cm, mean (SD) | 165.3 (5.9) | 168.5 (9.1) | 0.41 |
Weight, kg, mean (SD) | 67.5 (10.2) | 72.6 (16.9) | 0.36 |
BBS, mean (SD) | 56.0 (0.0) | 43.5 (4.1) | 0.00 ** |
Healthy Group (n = 8) | Chronic Stroke Group (n = 8) | p Value | |
---|---|---|---|
SWS with E/O, mean (SD) | 0.003 (0.001) | 0.003 (0.001) | 0.49 |
SWS with E/C, mean (SD) | 0.003 (0.001) | 0.005 (0.002) | 0.07 |
FTS with E/O, mean (SD) | 0.003 (0.001) | 0.004 (0.002) | 0.12 |
FTS with E/C, mean (SD) | 0.004 (0.001) | 0.005 (0.003) | 0.13 |
STS with E/O, mean (SD) | 0.005 (0.002) | 0.005 (0.003) | 0.65 |
STS with E/C, mean (SD) | 0.005 (0.002) | 0.010 (0.010) | 0.10 |
Healthy Group (n = 8) | Chronic Stroke Group (n = 8) | p value | |
---|---|---|---|
SWS with E/O, mean (SD) | 1.679 (0.913) | 4.801 (4.356) | 0.02 * |
SWS with E/C, mean (SD) | 2.115 (0.899) | 8.405 (6.226) | 0.00 ** |
FTS with E/O, mean (SD) | 3.420 (1.279) | 8.386 (6.365) | 0.01 ** |
FTS with E/C, mean (SD) | 5.468 (2.196) | 11.726 (7.132) | 0.03 * |
STS with E/O, mean (SD) | 6.837 (3.718) | 14.251 (6.911) | 0.03 * |
STS with E/C, mean (SD) | 11.424 (4.700) | 26.663 (15.080) | 0.01 ** |
ACC | GYR | |||
---|---|---|---|---|
PCC | p Value | PCC | P Value | |
SWS with E/O | −0.191 | 0.478 | −0.705 | 0.002 ** |
SWS with E/C | −0.492 | 0.053 | −0.805 | 0.000 ** |
FTS with E/O | −0.427 | 0.099 | −0.700 | 0.003 ** |
FTS with E/C | −0.395 | 0.130 | −0.752 | 0.001 ** |
STS with E/O | −0.096 | 0.723 | −0.725 | 0.001 ** |
STS with E/C | −0.470 | 0.067 | −0.694 | 0.003 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.-R.; Chiu, Y.-L.; Chiang, S.-L.; Chen, H.-Y.; Sung, W.-H. Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke. Sensors 2020, 20, 88. https://doi.org/10.3390/s20010088
Hou Y-R, Chiu Y-L, Chiang S-L, Chen H-Y, Sung W-H. Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke. Sensors. 2020; 20(1):88. https://doi.org/10.3390/s20010088
Chicago/Turabian StyleHou, You-Ruei, Ya-Lan Chiu, Shang-Lin Chiang, Hui-Ya Chen, and Wen-Hsu Sung. 2020. "Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke" Sensors 20, no. 1: 88. https://doi.org/10.3390/s20010088
APA StyleHou, Y.-R., Chiu, Y.-L., Chiang, S.-L., Chen, H.-Y., & Sung, W.-H. (2020). Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke. Sensors, 20(1), 88. https://doi.org/10.3390/s20010088