A New Calibration Circuit Design to Reduce Drift Effect of RuO2 Urea Biosensors
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Manufacturing of the Flexible Arrayed RuO2 Urea Biosensor
2.3. V–T Measurement System
- Vout is the response voltage of the LT1167 readout sensor,
- VA is the positive input of the amplifier,
- VB is the negative input of the amplifier,
- RG is the external resistor,
- Vr is the voltage of the reference electrode,
- Vw is the voltage of the working electrode.
2.4. The Proposed New Calibration Circuit for Drift Effect
3. Results and Discussion
3.1. Sensing Properties of the Flexible Arrayed RuO2 Urea Biosensor
3.2. Analysis of the Response Time of the Flexible Arrayed RuO2 Urea Biosensor
3.3. Analysis of Interference Effect of the Flexible Arrayed RuO2 Urea Biosensor
3.4. Analysis of the Drift Effect of the of the Flexible Arrayed RuO2 Urea Biosensor
3.5. Analysis of the Hysteresis Effect of the of the Flexible Arrayed RuO2 Urea Biosensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tyagi, M.; Tomar, M.; Gupta, V. NiO Nanoparticle-Based Urea Biosensor. Biosens. Bioelectron. 2013, 41, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.D.; Ali, A. Nanomaterials for Biosensors: Fundamentals and Applications; Elsevier: Atlanta, GA, USA, 2017. [Google Scholar]
- Andrianova, M.S.; Kuznetsov, E.V.; Grudtsov, V.P.; Kuznetsov, A.E. CMOS-Compatible Biosensor for L-Carnitine Detection. Biosens. Bioelectron. 2018, 119, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Molinnus, D.; Muschallik, L.; Gonzalez, L.O.; Bongaerts, J.; Wagner, T.; Selmer, T.; Siegert, P.; Keusgen, M.; Schoning, M.J. Development and Characterization of a Field-Effect Biosensor for the Detection of Acetoin. Biosens. Bioelectron. 2018, 115, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Tomar, M.; Gupta, V. Glad Assisted Synthesis of NiO Nanorods for Realization of Enzymatic Reagentless Urea Biosensor. Biosens. Bioelectron. 2014, 52, 196–201. [Google Scholar] [CrossRef]
- Arora, K.; Tomar, M.; Gupta, V. Highly Sensitive and Selective Uric Acid Biosensor Based on RF Sputtered NiO Thin Film. Biosens. Bioelectron. 2011, 30, 333–336. [Google Scholar] [CrossRef]
- Kaur, G.; Tomar, M.; Gupta, V. Nanostructured NiO-Based Reagentless Biosensor for Total Cholesterol and Low-Density Lipoprotein Detection. Anal. Bioanal. Chem. 2017, 409, 1995–2005. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef]
- Wei, L.; Wang, P.; Yang, Y.; Zhan, Z.; Dong, Y.; Songa, W.; Fan, R. Enhanced Performance of the Dye-Sensitized Solar Cells by the Introduction of Graphene Oxide into the TiO2 Photoanode. Inorg. Chem. Front. 2018, 5, 54–62. [Google Scholar] [CrossRef]
- Karunagaran, B.; Uthirakumar, P.; Chung, S.J.; Velumani, S.; Suh, E.K. TiO2 Thin Film Gas Sensor for Monitoring Ammonia. Mater. Charact. 2007, 58, 680–684. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Alev, O.; Kılıç, A.; Çakırlar, C.; Büyükköse, S.; Öztürk, Z. Gas Sensing Properties of p-Co3O4/n-TiO2 Nanotube Heterostructures. Sensors 2018, 18, 956. [Google Scholar] [CrossRef] [PubMed]
- Addabbo, T.; Fort, A.; Mugnaini, M.; Vignoli, V.; Baldi, A.; Bruzzi, M. Quartz-Crystal Microbalance Gas Sensors Based on TiO2 Nanoparticles. IEEE Trans. Instrum. Meas. 2018, 67, 722–730. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Kim, J. Porous Tin-Oxide-Coated Regenerated Cellulose as Disposable and Low-Cost Alternative Transducer for Urea Detection. IEEE Sens. J. 2013, 13, 2223–2228. [Google Scholar] [CrossRef]
- Ali, A.; Ansari, A.A.; Kaushik, A.; Solanki, P.R.; Barik, A.; Pandey, M.K.; Malhotra, B.D. Nanostructured Zinc Oxide Film for Urea Sensor. Mater. Lett. 2009, 63, 2473–2475. [Google Scholar] [CrossRef]
- Slaugther, G.A. Gold Interdigitated Microelectrodes Fabricated on Polyhydroxybutyrate Substrate for the Determination of Urea Using Impedimetric Measurements. IEEE Sens. J. 2012, 12, 821–826. [Google Scholar] [CrossRef]
- Ansari, S.G.; Ansari, Z.A.; Seo, H.K.; Kim, G.S.; Kim, Y.S.; Khang, G.; Shin, H.S. Urea Sensor Based on Tin Oxide Thin Films Prepared by Modified Plasma-Enhanced CVD. Sens. Actuators B Chem. 2008, 132, 265–271. [Google Scholar] [CrossRef]
- Chou, N.H.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Measurement and Comparison of Potentiometric Selectivity Coefficients of Urea Biosensors Based on Ammonium Ion-Selective Electrodes. IEEE Sens. J. 2005, 5, 1362–1368. [Google Scholar] [CrossRef]
- Pan, C.W.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Solid-State Urea Biosensor Based on the Differential Method. IEEE Sens. J. 2006, 6, 269–275. [Google Scholar]
- Chou, N.H.; Chou, J.C.; Sun, T.P.; Hsiung, S.K. Study on the Disposable Urea Biosensors Based on PVC-COOH Membrane Ammonium Ion-Selective Electrodes. IEEE Sens. J. 2006, 6, 262–268. [Google Scholar] [CrossRef]
- Laurinavicius, V.; Razumiene, J.; Gureviciene, V. Bioelectrochemical Conversion of Urea on Carbon Black Electrode and Application. IEEE Sens. J. 2013, 13, 2208–2213. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiu, Y.S. Gate-Recessed AlGaN/GaN ISFET Urea Biosensor Fabricated by Photoelectrochemical Method. IEEE Sens. J. 2016, 16, 1518–1523. [Google Scholar] [CrossRef]
- Chou, J.C.; Huang, H.Y.; Liao, Y.H.; Lai, C.H.; Yan, S.J.; Wu, C.Y.; Wu, Y.X. The Fabrication and Sensing Characteristics of Flexible Arrayed IGZO/Al Urea Biosensor Modified by Graphene Oxide. IEEE Sens. J. 2017, 16, 958–964. [Google Scholar] [CrossRef]
- Chou, J.C.; Wu, C.Y.; Kuo, P.Y.; Lai, C.H.; Nien, Y.H.; Wu, Y.X.; Lin, S.H.; Liao, Y.H. The Flexible Urea Biosensor Using Magnetic Nanoparticles. IEEE Trans. Nanotechnol. 2019, 18, 484–490. [Google Scholar] [CrossRef]
- Chou, J.C.; Wu, C.Y.; Lin, S.H.; Kuo, P.Y.; Lai, C.H.; Nien, Y.H.; Wu, Y.X.; Lai, T.Y. The Analysis of the Urea Biosensors Using Different Sensing Matrices via a Wireless Measurement system & microfluidic measurement system. Sensors 2019, 19, 2–11. [Google Scholar]
- Chou, J.C.; Yan, S.J.; Liao, Y.H.; Lai, C.H.; Chen, J.S.; Chen, H.Y.; Tseng, T.W.; Wu, T.Y. Characterization of flexible arrayed pH sensor based on nickel oxide films. IEEE Sens. J. 2018, 18, 605–612. [Google Scholar] [CrossRef]
- Chou, J.C.; Wu, C.Y.; Liao, Y.H.; Lai, C.H.; Yan, S.J.; Wu, Y.X.; Lin, S.H. Enzymatic urea sensor based on graphene oxide/titanium dioxide films modified by urease-magnetic beads. IEEE Trans. Nanotechnol. 2019, 18, 336–344. [Google Scholar] [CrossRef]
- Pocrifka, L.A.; Gonçalves, C.; Grossi, P.; Colpa, P.C.; Pereira, E.C. Development of RuO2–TiO2 (70–30) mol % for pH measurements. Sens. Actuators B Chem. 2006, 113, 1012–1016. [Google Scholar] [CrossRef]
- Chiang, J.L.; Jhan, S.S.; Hsieh, S.C.; Huang, A.L. Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system. Thin Solid Films 2009, 517, 4805–4809. [Google Scholar] [CrossRef]
- Adeyemo, A.; Hunter, G.; Dutta, P.K. Interaction of CO with hydrous ruthenium oxide and development of a chemoresistive ambient CO sensor. Sens. Actuators B Chem. 2011, 152, 307–315. [Google Scholar] [CrossRef]
- Chou, J.C.; Lin, C.Y.; Liao, Y.H.; Chen, J.T.; Tsai, Y.L.; Chen, J.L.; Chou, H.T. Data fusion and fault diagnosis for flexible arrayed pH sensor measurement system based on LabVIEW. IEEE Sens. J. 2014, 14, 1405–1411. [Google Scholar] [CrossRef]
- Tseng, S.C.; Wu, T.Y.; Chou, J.C.; Liao, Y.H.; Lai, C.H.; Yan, S.J.; Tseng, T.W. Investigation of sensitivities and drift effects of the arrayed flexible chloride sensor based on RuO2/GO at different temperatures. Sensors 2018, 18, 632. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.C.; Wu, T.Y.; Chou, J.C.; Liao, Y.H.; Lai, C.H.; Yan, S.J.; Tseng, T.W. Investigation of sensing characteristic of flexible arrayed RuO2 chlorine ion sensor modified by graphene oxide. Sens. Actuators B Chem. 2006, 113, 1012–1016. [Google Scholar] [CrossRef]
- Kuo, P.Y.; Lian, Z.L. NCRC to improve linearity and sensitivity for RuO2 urea biosensor sensing measurement. Electron. Lett. 2019, 55, 1076–1078. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, S.; Liu, T. Drift characteristics of pH-ISFET output. Chin. J. Semicond. 1994, 12, 838–843. [Google Scholar]
- Forootan, A.; Sjöback, R.; Björkman, J.; Sjögreen, B.; Linz, L.; Kubista, M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef]
- Rajakovic, L.V.; Marković, D.D.; Rajaković-Ognjanović, V.N.; Antanasijević, D.Z. Review: The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic. Talanta 2012, 102, 79–87. [Google Scholar] [CrossRef]
- Prats-Alfonso, E.; Abad, L.; Casan-Pastor, N.; Gonzalo-Ruiz, J.; Baldrich, E. Iridium oxide pH sensor for biomedical applications. case urea– urease in real urine samples. Biosens. Bioelectron. 2013, 39, 163–169. [Google Scholar] [CrossRef]
- Jakhar, S.; Pundir, C.S. Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosens. Bioelectron. 2018, 100, 242–250. [Google Scholar] [CrossRef]
Membrane | Urea Concentration (mg/dL) | Response Voltage (mV) (Mean ± SD) | Average Sensitivity (mV/(mg/dL)) | Linearity | LOD (mg/dL) |
---|---|---|---|---|---|
Urease/RuO2 | 10 | 73.49 ± 2.06 | 1.860 | 0.999 | 1.345 |
20 | 92.26 ± 3.46 | ||||
30 | 111.48 ± 4.08 | ||||
40 | 131.63 ± 5.96 | ||||
50 | 147.14 ± 3.76 |
Sensing membrane | Liner Range (mg/dL) | Average Sensitivity (mV/(mg/dL)) | Linearity | Limit of Detection (LOD) | Reference |
---|---|---|---|---|---|
Urease/RuO2 | 10–50 | 1.860 | 0.999 | 1.345 mg/dL (0.239 mM) | This work |
SnO2 | 5–80 | 1.980 | 0.976 | − | [19] 2006 |
Magnetic microparticles-Urease/ Iridium oxide/Pt | 0–7.5 | 1.964 | 0.997 | 78 μM | [38] 2013 |
Preparation, characterization, and application of urease nanoparticles for construction of an improved potentiometric urea biosensor | 0.012–0.480 | 1.001 | 0.999 | 1 μmol/L | [39] 2018 |
Urease-MBs/GO/NiO | 10–50 | 6.343 | 0.960 | 1.338 mg/dL (0.223 mM) | [24] 2019 |
Urease/TiO2 | 10–50 | 1.445 | 0.977 | − | [27] 2019 |
Urease/RuO2 | 10–50 | 1.220 | 0.956 | − | [34] 2019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, P.-Y.; Dong, Z.-X. A New Calibration Circuit Design to Reduce Drift Effect of RuO2 Urea Biosensors. Sensors 2019, 19, 4558. https://doi.org/10.3390/s19204558
Kuo P-Y, Dong Z-X. A New Calibration Circuit Design to Reduce Drift Effect of RuO2 Urea Biosensors. Sensors. 2019; 19(20):4558. https://doi.org/10.3390/s19204558
Chicago/Turabian StyleKuo, Po-Yu, and Zhe-Xin Dong. 2019. "A New Calibration Circuit Design to Reduce Drift Effect of RuO2 Urea Biosensors" Sensors 19, no. 20: 4558. https://doi.org/10.3390/s19204558
APA StyleKuo, P. -Y., & Dong, Z. -X. (2019). A New Calibration Circuit Design to Reduce Drift Effect of RuO2 Urea Biosensors. Sensors, 19(20), 4558. https://doi.org/10.3390/s19204558