Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Image Data Source
2.1.2. Label Data Making
2.1.3. Training Data Augmentation
2.2. Methods
2.2.1. Stem Block
2.2.2. D-LinkNetPlus Building
2.2.3. DBlock Structure Optimization
2.2.4. Net Parameters
3. Results and Discussion
3.1. Implementation Details
3.2. Result and Discussion
3.2.1. D-LinkNetPlus Result and Discussion
3.2.2. B- D-LinkNetPlus Results and Discussion
3.2.3. Validation on Public Dataset
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, J.I.; Kim, T.; Shin, D.; Kim, S. Fast and robust geometric correction for mosaicking UAV images with narrow overlaps. Int. J. Remote Sens. 2017, 38, 2557–2576. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.; Yang, H. Road extraction method of full convolution neural network remote sensing image. Remote Sens. Inf. 2018, 33, 69–75. [Google Scholar]
- Li, Y.; Xu, L.; Rao, J.; Guo, L.; Yan, Z.; Jin, S. A Y-Net deep learning method for road segmentation using high-resolution visible remote sensing images. Remote Sens. Lett. 2019, 10, 381–390. [Google Scholar] [CrossRef]
- Liu, R.; Miao, Q.; Song, J.; Quan, Y.; Li, Y.; Xu, P.; Dai, J. Multiscale road centerlines extraction from high-resolution aerial imagery. Neurocomputing 2019, 329, 384–396. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Z.; Feng, Y.; Chen, Z. Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning. Remote Sens. 2018, 10, 1461. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Chen, M.; Yang, Z. Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine. Int. J. Remote Sens. 2015, 36, 3144–3169. [Google Scholar] [CrossRef]
- Sun, T.; Chen, Z.; Yang, W.; Wang, Y. Stacked u-nets with multi-output for road extraction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 202–206. [Google Scholar]
- Kestur, R.; Farooq, S.; Abdal, R.; Mehraj, E.; Narasipura, O.S.; Mudigere, M. UFCN: A fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J. Appl. Remote Sens. 2018, 12, 016020. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B. A novel road segmentation technique from orthophotos using deep convolutional autoencoders. Korean J. Remote Sens. 2017, 33, 423–436. [Google Scholar]
- Costea, D.; Marcu, A.; Slusanschi, E.; Leordeanu, M. Roadmap Generation using a Multi-Stage Ensemble of Deep Neural Networks with Smoothing-Based Optimization. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 220–224. [Google Scholar]
- Filin, O.; Zapara, A.; Panchenko, S. Road detection with EOSResUNet and post vectorizing algorithm. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 211–215. [Google Scholar]
- Buslaev, A.; Seferbekov, S.S.; Iglovikov, V.; Shvets, A. Fully convolutional network for automatic road extraction from satellite imagery. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4321–4324. [Google Scholar]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 182–186. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In European Conference on Computer Vision; Springer: Cham, UK, 2016; pp. 630–645. [Google Scholar]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Wiedemann, C.; Heipke, C.; Mayer, H.; Jamet, O. Empirical evaluation of automatically extracted road axes. In Empirical Evaluation Techniques in Computer Vision; IEEE Computer Society Press: Los Alamitos, CA, USA, 1998; pp. 172–187. [Google Scholar]
- Zhou, P.; Ni, B.; Geng, C.; Hu, J.; Xu, Y. Scale-transferrable object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 528–537. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Perciano, T.; Tupin, F.; Hirata, R., Jr.; Cesar, R.M., Jr. A two-level Markov random field for road network extraction and its application with optical, SAR, and multitemporal data. Int. J. Remote Sens. 2016, 37, 3584–3610. [Google Scholar] [CrossRef]
- Li, M.; Stein, A.; Bijker, W.; Zhan, Q. Region-based urban road extraction from VHR satellite images using Binary Partition Tree. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 217–225. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.G.; Chen, Y.; Xue, X. Dsod: Learning deeply supervised object detectors from scratch. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1919–1927. [Google Scholar]
Layer Name | Output Size | D-LinkNetPlus_50 | D-LinkNetPlus_101 |
---|---|---|---|
Stem block | Conv | Conv | |
, avg pool, | , avg pool, | ||
Encoder1 | Conv | Conv | |
Encoder2 | Conv | Conv | |
Encoder3 | Conv | Conv | |
Encoder4 | Conv | Conv | |
Center | DBlock | DBlock | |
Decoder4 | |||
Decoder3 | |||
Decoder2 | |||
Decoder1 | |||
F1 | Deconv | Deconv | |
Logits | Conv | Conv |
Network Name | Network Size | IoU |
---|---|---|
D-LinkNet_50 | 792 M | 51.02% |
D-LinkNet_101 | 0.98 G | 52.67% |
D-LinkNetPlus_50 | 686 M | 51.85% |
D-LinkNetPlus_101 | 758 M | 52.87% |
Network Name | Network Model Size | IoU |
---|---|---|
D-LinkNet_50 | 792 M | 51.02% |
D-LinkNet_101 | 0.98 G | 52.67% |
B-D-LinkNetPlus_50 | 298 M | 52.86% |
B-D-LinkNetPlus_101 | 370 M | 52.94% |
Network Name | Network Model Size | IoU |
---|---|---|
D-LinkNet_50 | 702 M | 57.18% |
D-LinkNet_101 | 758 M | 57.43% |
D-LinkNetPlus_50 | 582 M | 57.58% |
D-LinkNetPlus_101 | 636 M | 57.64% |
B-D-LinkNetPlus_50 | 371 M | 59.29% |
B-D-LinkNetPlus_101 | 434 M | 59.45% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Peng, B.; He, L.; Fan, K.; Li, Z.; Tong, L. Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks. Sensors 2019, 19, 4115. https://doi.org/10.3390/s19194115
Li Y, Peng B, He L, Fan K, Li Z, Tong L. Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks. Sensors. 2019; 19(19):4115. https://doi.org/10.3390/s19194115
Chicago/Turabian StyleLi, Yuxia, Bo Peng, Lei He, Kunlong Fan, Zhenxu Li, and Ling Tong. 2019. "Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks" Sensors 19, no. 19: 4115. https://doi.org/10.3390/s19194115
APA StyleLi, Y., Peng, B., He, L., Fan, K., Li, Z., & Tong, L. (2019). Road Extraction from Unmanned Aerial Vehicle Remote Sensing Images Based on Improved Neural Networks. Sensors, 19(19), 4115. https://doi.org/10.3390/s19194115