Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Cocoa Trees and Pods/Beans Sampling
2.3. Image Data Acquisition
2.4. Estimation of Canopy Architecture Parameters by the VitiCanopy App
2.5. Aerial Imagery and Processing
- Automatic Individual segmentation of tree biomass material using the CIELab (specifically the “a” band) color code to generate a binary image of sub-images analyzed per tree (Figure 3B).
- Analysis of binary images per area assigned per plant using algorithms described previously (Equations (1)–(6)). Each sub-image is treated as an individual upward-looking image obtained by VitiCanopy, using the sky as a background. A subsequent subdivision of 5 × 5 was used for each tree image for gap analysis, as described by [17,21] (Figure 3C). From the aerial image, it was assumed to be a downward-looking image at Nadir (0° angle) using the inter-row as a background [17,21].
- The obtained canopy architecture data were compiled in a matrix form to preserve plant positions and for easier handling for mapping purposes.
- If canopies were of low cover (fc > 0.1), they were considered as missing trees [24].
- Tree GPS positions were extracted from the GPS coordinates of the corners of blocks for data mapping purposes.
2.6. Cocoa Bean Fermentation and Drying Process
2.7. Analysis of Volatile Compounds Using Gas Chromatography-Mass Spectroscopy
2.8. Statistical Analysis and Machine Learning Modeling
3. Results
3.1. Canopy Architecture and Volatile Compounds
3.2. Machine Learning Modeling
3.3. Implementation of the Machine Learning Model Developed to Map Aroma Compounds from Aerial Imagery
4. Discussion
4.1. Canopy Architecture and Volatile Compounds
4.2. Machine Learning Modeling to Predict the Aroma Profile
4.3. Implementation of the Machine Learning Model Developed to Map Aroma Compounds from Aerial Imagery
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dand, R. Chapter 9: Cocoa Bean Processing and the Manufacture of Chocolate. In The International Cocoa Trade; MacFadyen, H., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2011. [Google Scholar]
- ICCO. Production of Cocoa Beans; International Cocoa Organization: London, UK, 2017. [Google Scholar]
- Astika, I.; Solahudin, M.; Kurniawan, A.; Wulandari, Y. Determination of cocoa bean quality with image processing and artificial neural network. In The Quality Information for Competitive Agricultural Based Production System and Commerce, Proceedings of the AFITA 2010 International Conference, Bogor, Indonesia, 4–7 October 2010; Asian Federation for Information Technology in Agriculture: Bogor, Indonesia, 2010. [Google Scholar]
- Beckett, S.T.; Fowler, M.S.; Ziegler, G.R. Beckett’s Industrial Chocolate Manufacture and Use; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- De Brito, E.S.; García, N.H.P.; Amancio, A.C.; Valente, A.L.; Pini, G.F.; Augusto, F. Effect of autoclaving cocoa nibs before roasting on the precursors of the Maillard reaction and pyrazines. Int. J. Food Sci. Technol. 2001, 36, 625–630. [Google Scholar] [CrossRef]
- Ilangantileke, S.; Wahyudi, T.; Bailon, M.G. Assessment methodology to predict quality of cocoa beans for export. J. Food Qual. 1991, 14, 481–496. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor formation and character in cocoa and chocolate: A critical review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef] [PubMed]
- Elwers, S.; Zambrano, A.; Rohsius, C.; Lieberei, R. Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). Eur. Food Res. Technol. 2009, 229, 937–948. [Google Scholar] [CrossRef]
- Hansen, C.E.; Mañez, A.; Burri, C.; Bousbaine, A. Comparison of enzyme activities involved in flavour precursor formation in unfermented beans of different cocoa genotypes. J. Sci. Food Agric. 2000, 80, 1193–1198. [Google Scholar] [CrossRef]
- Saravia-Matus, S.L.; Rodríguez, A.G.; Saravia, J.A. Determinants of certified organic cocoa production: Evidence from the province of Guayas, Ecuador. Org. Agric. 2019, 1–12. [Google Scholar] [CrossRef]
- Department of Agriculture and Fisheries. Growing Cocoa; Government of Queensland: Brisbane, Australia, 2015.
- Trognitz, B.; Cros, E.; Assemat, S.; Davrieux, F.; Forestier-Chiron, N.; Ayestas, E.; Kuant, A.; Scheldeman, X.; Hermann, M. Diversity of cacao trees in Waslala, Nicaragua: Associations between genotype spectra, product quality and yield potential. PLoS ONE 2013, 8, e54079. [Google Scholar] [CrossRef]
- Smulders, M.; Esselink, D.; Amores, F.; Ramos, G.; Sukha, D.; Butler, D.; Vosman, B.; Van Loo, E. Identification of cocoa (Theobroma cacao L.) varieties with different quality attributes and parentage analysis of their beans. IGENIC Newsl. 2008, 12, 1–13. [Google Scholar]
- Olujide, M.; Adeogun, S. Assessment of cocoa growers’ farm management practices in Ondo State, Nigeria. Span. J. Agric. Res. 2006, 4, 173–179. [Google Scholar] [CrossRef]
- Daymond, A.; Hadley, P. Differential effects of temperature on fruit development and bean quality of contrasting genotypes of cacao (Theobroma cacao). Ann. Appl. Biol. 2008, 153, 175–185. [Google Scholar] [CrossRef]
- Saunders, J.A.; Mischke, S.; Leamy, E.A.; Hemeida, A.A. Selection of international molecular standards for DNA fingerprinting of Theobroma cacao. Theor. Appl. Genet. 2004, 110, 41–47. [Google Scholar] [CrossRef] [PubMed]
- De Bei, R.; Fuentes, S.; Gilliham, M.; Tyerman, S.; Edwards, E.; Bianchini, N.; Smith, J.; Collins, C. VitiCanopy: A free computer app to estimate canopy vigor and porosity for grapevine. Sensors 2016, 16, 585. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Fuentes, S.; Ortega-Farias, S.; Gonzalez-Talice, J.; Yuri, J.A. Digital cover photography for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient. Sensors 2015, 15, 2860–2872. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of leaf area index in eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188. [Google Scholar] [CrossRef]
- Miyaji, K.-I.; Da Silva, W.S.; Alvim, P.D.T. Longevity of leaves of a tropical tree, Theobroma cacao, grown under shading, in relation to position within the canopy and time of emergence. New Phytol. 1997, 135, 445–454. [Google Scholar] [CrossRef]
- Fuentes, S.; Palmer, A.R.; Taylor, D.; Zeppel, M.; Whitley, R.; Eamus, D. An automated procedure for estimating the leaf area index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application to an examination of the relationship between remotely sensed and field measurements of LAI. Funct. Plant Biol. 2008, 35, 1070–1079. [Google Scholar] [CrossRef]
- Yapp, J.H.; Hong, H. A Study into the Potential for Enhancing Productivity in Cocoa (Theobroma cacao L.) through Exploitation of Physiological and Genetic Variation; University of Reading: Reading, UK, 1992. [Google Scholar]
- Daymond, A.; Hadley, P.; Machado, R.; Ng, E. Canopy characteristics of contrasting clones of cacao (Theobroma cacao). Exp. Agric. 2002, 38, 359–367. [Google Scholar] [CrossRef]
- Baofeng, S.; Jinru, X.; Chunyu, X.; Yuyang, S.; Fuentes, S. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int. J. Agric. Biol. Eng. 2016, 9, 119–130. [Google Scholar]
- Xue, J.; Fan, Y.; Su, B.; Fuentes, S. Assessment of canopy vigor information from kiwifruit plants based on a digital surface model from unmanned aerial vehicle imagery. Int. J. Agric. Biol. Eng. 2019, 12, 165–171. [Google Scholar] [CrossRef]
- Biehl, B.; Meyer, B.; Crone, G.; Pollmann, L.; Said, M.B. Chemical and physical changes in the pulp during ripening and post-harvest storage of cocoa pods. J. Sci. Food Agric. 1989, 48, 189–208. [Google Scholar] [CrossRef]
- Selamat, J.; Mordingah Harun, S. Formation of methyl pyrazine during cocoa bean fermentation. Pertanika 1994, 17, 27. [Google Scholar]
- Rodriguez-Campos, J.; Escalona-Buendía, H.; Contreras-Ramos, S.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef] [PubMed]
- The Good Scents Company. The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com (accessed on 3 March 2019).
- Ramos, C.L.; Dias, D.R.; PedrozoMiguel, M.G.D.; FreitasSchwan, R. Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation. Food Res. Int. 2014, 64, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Owusu, M.; Petersen, M.A.; Heimdal, H. Assessment of aroma of chocolate produced from two Ghanaian cocoa fermentation types. In Proceedings of the 12th International Weurman Flavour Research Symposium, Interlaken, Switzerland, 1–4 July 2008. [Google Scholar]
- Rodriguez-Campos, J.; Escalona-Buendía, H.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Bonvehí, J.S. Technology. Investigation of aromatic compounds in roasted cocoa powder. Eur. Food Res. Technol. 2005, 221, 19–29. [Google Scholar] [CrossRef]
- Bos, M.M.; Steffan-Dewenter, I.; Tscharntke, T. Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agric. Ecosyst. Environ. 2007, 120, 201–205. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor chemistry of cocoa and cocoa products—An overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Ramli, N.; Hassan, O.; Said, M.; Samsudin, W.; Idris, N.A. Influence of roasting conditions on volatile flavor of roasted Malaysian cocoa beans. J. Food Process. Preserv. 2006, 30, 280–298. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; Van de Walle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Brillante, L.; Kurtural, S.K. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Front. Plant Sci. 2019, 10, 10. [Google Scholar] [CrossRef]
Sample | LAI | LAIe | Canopy Cover (fc) | Crown Cover (ff) | Crown Porosity (Φ) | Clumping Index (Ω) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
B1C15A | 3.08 b | 0.68 | 2.79 a | 0.76 | 0.836 a | 0.094 | 0.962 a | 0.061 | 0.134 a | 0.050 | 0.951 a | 0.067 |
B1C16A | 2.78 b | 0.96 | 2.55 a | 1.12 | 0.755 a | 0.116 | 0.879 a | 0.107 | 0.142 a | 0.050 | 0.851 a | 0.131 |
B1C17A | 3.60 a | 0.69 | 3.19 a | 0.36 | 0.868 a | 0.063 | 0.957 a | 0.060 | 0.094 b | 0.035 | 0.904 a | 0.122 |
B1C18A | 3.47 a | 0.82 | 3.18 a | 1.08 | 0.843 a | 0.094 | 0.932 a | 0.077 | 0.097 b | 0.036 | 0.887 a | 0.127 |
B1C1A | 3.62 a | 0.68 | 3.32 a | 0.98 | 0.863 a | 0.069 | 0.945 a | 0.050 | 0.088 b | 0.032 | 0.888 a | 0.100 |
B1C25A | 4.56 a | 0.73 | 4.08 a | 0.73 | 0.939 a | 0.037 | 0.994 a | 0.014 | 0.056 b | 0.026 | 0.986 a | 0.034 |
B1C26B | 2.55 b | 0.47 | 2.33 a | 0.69 | 0.730 a | 0.074 | 0.863 a | 0.086 | 0.153 a | 0.050 | 0.814 a | 0.112 |
B1C27A | 3.31 a | 0.70 | 3.04 a | 0.97 | 0.834 a | 0.105 | 0.928 a | 0.087 | 0.104 b | 0.030 | 0.894 a | 0.121 |
B1C2A | 3.50 a | 1.16 | 3.20 a | 1.33 | 0.827 a | 0.129 | 0.915 a | 0.111 | 0.099 b | 0.051 | 0.875 a | 0.146 |
B1C36A | 3.68 a | 0.20 | 3.32 a | 0.56 | 0.867 a | 0.046 | 0.946 a | 0.054 | 0.080 b | 0.011 | 0.872 a | 0.117 |
B1C3A | 4.29 a | 1.20 | 3.92 a | 1.43 | 0.881 a | 0.139 | 0.935 a | 0.141 | 0.059 b | 0.031 | 0.905 a | 0.195 |
B1C45A | 2.65 b | 0.45 | 2.41 a | 0.67 | 0.772 a | 0.079 | 0.913 a | 0.070 | 0.156 a | 0.030 | 0.886 a | 0.092 |
B1C4A | 2.40 b | 0.29 | 2.18 b | 0.51 | 0.668 b | 0.085 | 0.775 b | 0.112 | 0.135 a | 0.036 | 0.723 b | 0.116 |
B2C12A | 3.06 b | 0.48 | 2.84 a | 0.75 | 0.847 a | 0.061 | 0.980 a | 0.041 | 0.136 a | 0.035 | 0.972 a | 0.056 |
B2C13A | 3.33 a | 0.49 | 3.03 a | 0.56 | 0.875 a | 0.046 | 0.991 a | 0.017 | 0.117 b | 0.035 | 0.986 a | 0.028 |
B2C14A | 2.61 b | 0.98 | 2.46 b | 1.13 | 0.727 b | 0.196 | 0.853 a | 0.209 | 0.152 a | 0.053 | 0.863 a | 0.158 |
B2C15A | 2.30 b | 0.29 | 2.12 b | 0.48 | 0.720 b | 0.059 | 0.888 a | 0.068 | 0.188 a | 0.035 | 0.864 a | 0.073 |
B2C16A | 2.81 b | 0.51 | 2.59 a | 0.66 | 0.791 a | 0.114 | 0.919 a | 0.122 | 0.140 a | 0.021 | 0.902 a | 0.132 |
B2C17A | 2.88 b | 0.89 | 2.63 a | 0.89 | 0.770 a | 0.145 | 0.885 a | 0.126 | 0.134 a | 0.053 | 0.871 a | 0.139 |
B2C1A | 3.27 a | 0.49 | 2.99 a | 0.55 | 0.867 a | 0.048 | 0.984 a | 0.031 | 0.119 b | 0.028 | 0.974 a | 0.052 |
B2C22A | 2.91 b | 0.36 | 2.69 a | 0.60 | 0.816 a | 0.059 | 0.947 a | 0.058 | 0.138 a | 0.027 | 0.913 a | 0.085 |
B2C24A | 2.56 b | 0.76 | 2.36 b | 0.81 | 0.719 b | 0.150 | 0.849 a | 0.159 | 0.153 a | 0.063 | 0.828 a | 0.154 |
B2C25A | 3.02 b | 0.63 | 2.80 a | 0.83 | 0.796 a | 0.120 | 0.901 a | 0.122 | 0.118 b | 0.030 | 0.865 a | 0.140 |
B2C27A | 3.13 a | 0.64 | 3.13 a | 0.64 | 0.849 a | 0.060 | 0.976 a | 0.036 | 0.131 a | 0.038 | 0.962 a | 0.055 |
Block | LAI | LAIe | Canopy Cover (fc) | Crown Cover (ff) | Crown Porosity (Φ) | Clumping Index (Ω) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
B1 | 3.35 a | 0.93 | 3.04 a | 1.01 | 0.822 a | 0.11 | 0.919 a | 0.095 | 0.107 b | 0.048 | 0.880 a | 0.126 |
B2 | 2.89 b | 0.67 | 2.68 b | 0.76 | 0.796 a | 0.12 | 0.923 a | 0.116 | 0.139 a | 0.043 | 0.907 a | 0.116 |
Volatile Compounds | Compound Group | Aroma Associated | References |
---|---|---|---|
Phenethyl acetate | Ester | Honey/floral/yeasty/cocoa | [28,29] |
2-Phenyl-2-butenal | Aldehyde | Sweet/cocoa/nutty/beany | [28,29] |
Isoamyl acetate | Ester | Banana/fruity | [29,30] |
Tetramethylpyrazine | Pyrazine | Roasted/cocoa/coffee/nutty/earthy | [7,29,31] |
Phenylacetaldehyde | Aldehyde | Honey/rose/cocoa | [29,31] |
2,3-Butanediol | Alcohol | Cocoa butter/creamy | [29,30] |
Isovaleraldehyde | Aldehyde | Chocolate/nutty/cocoa | [28,29] |
2-Pentanone | Ketone | Fruity | [29,32] |
Diacetyl/2,3-Butanedione | Ketone | Butter/creamy/caramel | [28,29] |
Ethyl acetate | Ester | Pineapple/fruity/green | [28,29] |
Acetoin | Ketone | Butter/creamy/dairy/fatty | [28,29] |
2-Heptanol | Alcohol | Citrus/fruity | [28,29] |
3-Methyl-2-butanol | Alcohol | Cocoa/alcoholic/musty | [29] |
Isoamyl alcohol | Alcohol | Malty/banana/pungent | [29,32] |
2,3-Dimethylpyrazine | Pyrazine | Caramel/cocoa/coffee/nut skin | [29,33] |
2,3-Dimethyl-5-ethylpyrazine | Pyrazine | Burnt/roasted/cocoa | [29] |
Benzaldehyde | Aldehyde | Cherry/almond/bitter | [29,33] |
Ethyl Phenylacetate | Esters | Honey/rose/dark chocolate | [29] |
Benzyl alcohol | Alcohol | Sweet/floral/rose/phenolic | [28] |
Phenylethyl alcohol | Alcohol | Honey/bready/floral | [29] |
Stage | Samples | Observations (Samples × 6 Targets) | R | MSE |
---|---|---|---|---|
Training | 147 | 882 | 0.82 | 0.09 |
Testing | 26 | 156 | 0.81 | 0.11 |
Overall | 173 | 1038 | 0.82 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, S.; Chacon, G.; Torrico, D.D.; Zarate, A.; Gonzalez Viejo, C. Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. Sensors 2019, 19, 3054. https://doi.org/10.3390/s19143054
Fuentes S, Chacon G, Torrico DD, Zarate A, Gonzalez Viejo C. Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. Sensors. 2019; 19(14):3054. https://doi.org/10.3390/s19143054
Chicago/Turabian StyleFuentes, Sigfredo, Gabriela Chacon, Damir D. Torrico, Andrea Zarate, and Claudia Gonzalez Viejo. 2019. "Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application" Sensors 19, no. 14: 3054. https://doi.org/10.3390/s19143054
APA StyleFuentes, S., Chacon, G., Torrico, D. D., Zarate, A., & Gonzalez Viejo, C. (2019). Spatial Variability of Aroma Profiles of Cocoa Trees Obtained through Computer Vision and Machine Learning Modelling: A Cover Photography and High Spatial Remote Sensing Application. Sensors, 19(14), 3054. https://doi.org/10.3390/s19143054