A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface
Abstract
:1. Introduction
2. Model Description
2.1. Sea Surface Model
2.2. Ray Tracing
- (1)
- Generate the sea surface model randomly using the provided wind speed.
- (2)
- Select a certain point randomly above the sea surface as the starting point. Then, emit a photon along the given view angle, and the photon strikes the sea surface. Assume that the initial energy weight is one.
- (3)
- Calculate the crossover point between photon and sea surface. Assume that each collision is specular reflection and then compute the incident angle and reflection angle.
- (4)
- Following the law of Fresnel and Snell, a single-pass reflectivity is computed by using the complex refraction index as a parameter.
- (5)
- After each collision, the energy weight of a photon multiplies by single-pass reflectivity and we get a new weight of energy.
- (6)
- Then, the reflected photon keeps hitting the surface. If the photon leaves the surface, the process stops and calculate the energy of reflection. If not, repeat step (3).
- (7)
- Continue the simulation process until the energy of photon is less than a certain value or the number of bounces reaches the maximum.
- (8)
- In the Monte Carlo method, we compute huge numbers of photons and repeat step (1) to step (7) until the result is close enough to the real value.
- (9)
- Finally, calculate the average of the reflected energy, and subtract it from one to get the effective emissivity according to Kirchhoff’s law.
3. Results and Validation
3.1. Model Results
3.2. Validation
3.2.1. Field Measurements
3.2.2. Validation Results
4. Discussion
4.1. Features of the Newly Developed Model
4.2. Potential Use of the Model
4.3. Limitations of this Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McMillin, L.M. Estimation of sea surface temperature from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 20, 11587–11601. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.B.; Minnett, P.J.; Evans, R. A decade of sea surface temperature from modis. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Schuckmann, K.v.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Leob, N.; Mathieu, P.-P.; et al. An imperative to monitor earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef]
- Stephens, G.L.; L’Ecuyer, T. The earth’s energy balance. Atmos. Res. 2015, 166, 195–203. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. Tracking earth’s energy. Science 2010, 5976, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Cheng, X.; Liang, S.; Niclòs, R.; Nie, A.; Liu, Q. A lookup table-based method for estimating sea surface hemispherical broadband emissivity values (8–13.5 μm). Remote Sens. 2017, 9, 245. [Google Scholar] [CrossRef]
- Wilber, A.C.; Kratz, D.P.; Gupta, S.K. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation. In NASA Tech. Publ.; NASA/TP-1999-209362; 1999. Available online: http://techreports.larc.nasa.gov/1trs (accessed on 10 May 2019).
- Cheng, J.; Liang, S. Effects of thermal-infrared emissivity directionality on surface broadband emissivity and longwave net radiation estimation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 499–503. [Google Scholar] [CrossRef]
- Niclos, R.; Caselles, V.; Coll, C.; Valor, E. Determination of sea surface temperature at large observation angles using an angular and emissivity-dependent split-window equation. Remote Sens. Environ. 2007, 111, 107–121. [Google Scholar] [CrossRef]
- Wu, X.; Smith, W.L. Emissivity of rough sea surface for 8–13 µm: modeling and verification. Appl. Opt. 1997, 36, 2609–2619. [Google Scholar] [CrossRef]
- Hanafin, J.A.; Minnett, P.J. Measurements of the infrared emissivity of a wind-roughened sea surface. Appl. Opt. 2005, 44, 398–411. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Masuda, K.; Takashima, T.; Takayama, Y. Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 1988, 24, 313–329. [Google Scholar] [CrossRef]
- Watts, P.D.; Allen, M.R.; Nightingale, T.J. Wind speed effects on sea surface emission and reflection for the along track scanning radiometer. J. Atmos. Ocean. Technol. 1996, 13, 126–141. [Google Scholar] [CrossRef]
- Masuda, K. Infrared sea surface emissivity including multiple reflection effect for isotropic gaussian slope distribution model. Remote Sens. Environ. 2006, 103, 488–496. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash. Appl. Opt. 1973, 12, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.G.; Theiler, J.; Villeneuve, P. The polarized emissivity of a wind-roughened sea surface: A monte carlo model. Remote Sens. Environ. 2003, 88, 453–467. [Google Scholar] [CrossRef]
- Nalli, N.R.; Minnett, P.J.; Delst, P.V. Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I. Theoretical development and calculations. Appl. Opt. 2008, 47, 3701–3721. [Google Scholar] [CrossRef]
- Maddy, E.S.; Barnet, C.D. Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2375–2384. [Google Scholar] [CrossRef]
- Delst, P.V. Jcsda Infrared Sea Surface Emissivity Model. In Proceedings of the 13th International TOVS Study Conference, Sainte-Adele, QC, Canada, 29 October–4 November 2003. [Google Scholar]
- Yoshimori, K.; Itoh, K.; Ichioka, Y. Thermal radiative and reflective characteristics of a wind-roughened water surface. J. Opt. Soc. Am. A 1994, 11, 1886–1893. [Google Scholar] [CrossRef]
- Hasselmann, D.E.; Dunckel, M.; Ewing, J.A. Directional wave spectra observed during jonswap 1973. J. Phys. Oceanogr. 1980, 10, 1264–1280. [Google Scholar] [CrossRef]
- Kinsman, B. Wind Waves: Their Generation and Propagation on the Ocean Surface; Dover Publication Incorporation: New York, NY, USA, 1965. [Google Scholar]
- Zhou, G.; Niu, C.; Xu, W.; Yang, W.; Wang, J.; Zhao, H. Canopy modeling of aquatic vegetation: A radiative transfer approach. Remote Sens. Environ. 2015, 163, 186–205. [Google Scholar] [CrossRef]
- Hale, G.; Querry, M. Optical constants of water in the 200-nm to 200-um wavelength kegion. App. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Friedman, D. Infrared characteristics of ocean water (1.5–15 micro). Appl. Opt. 1969, 8, 2073–2078. [Google Scholar] [CrossRef]
- Smith, W.L.; Knuteson, R.O.; Revercomb, H.E.; Feltz, W.; Howell, H.B.; Menzel, W.P.; Nalli, N.; Brown, O.B.; Minnett, P.J.; McKeown, W. Observations of the infrared radiative properties of the ocean--implications for the measurement of sea surface temperature via satellite remote sensing. Bull. Am. Meteorol. Soc. 1996, 77, 41–51. [Google Scholar] [CrossRef]
- Niclòs, R.; Valor, E.; Caselles, V.; Coll, C.; Sánchez, J.M. In situ angular measurements of thermal infrared sea surface emissivity—Validation of models. Remote Sens. Environ. 2005, 94, 83–93. [Google Scholar] [CrossRef]
- Branch, R.; Chickadel, C.C.; Jessup, A.T. Infrared emissivity of seawater and foam at large incidence angles in the 3–14 um wavelength range. Remote Sens. Environ. 2016, 184, 15–24. [Google Scholar] [CrossRef]
- Collins, D.G.; Blättner, W.G.; Wells, M.B.; Horak, H.G. Backward monte carlo calculations of the polarization characteristics of the radiation emerging from spherical-shell atmospheres. Appl. Opt. 1972, 11, 2684–2696. [Google Scholar] [CrossRef]
- Preisendorfer, R.W.; Mobley, C.D. Albedos and glitter patterns of a wind-rougheded sea surface. J. Phys. Oceanogr. 1986, 16, 1293–1316. [Google Scholar] [CrossRef]
- Kanani, K.; Poutier, L.; Nerry, F.; Stoll, M.-P. Directional effects consideration to improve out-doors emissivity retrieval in teh 3-13 um domain. Opt. Express 2007, 15, 12464–12482. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Liang, S. 5.10—Land-surface emissivity. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 217–263. [Google Scholar]
- Cheng, J.; Liang, S.; Wang, J.; Li, X. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. [Google Scholar] [CrossRef]
- Niclos, R.; Caselles, V.; Valor, E.; Coll, C. Foam effect on the sea surface emissivity in the 8-14 um region. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Anguelova, M.D.; Bettenhausen, M.H.; Gaiser, P.W. Passive remote sensing of sea foam using physically-based models. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’06), Denver, CO, USA, 31 July–4 August 2006; pp. 3676–3679. [Google Scholar]
View Angle | 36.5° | 56.5° | 73.5° |
---|---|---|---|
Bias | 0.001 | −0.0014 | −0.009 |
RMSD | 0.0017 | 0.0021 | 0.0102 |
View Angle | 60° | 65° | 70° | 75° | 80° | 85° |
---|---|---|---|---|---|---|
Bias | 0.0008 | −0.004 | −0.010 | −0.0160 | −0.0038 | 0.0757 |
RMSD | 0.0036 | 0.006 | 0.0128 | 0.0181 | 0.0150 | 0.0822 |
View Angle | Channel 1 Diff. | Channel 4 Diff. | Channel 3 Diff. | Channel 2 Diff. | ||||
---|---|---|---|---|---|---|---|---|
ws1 | ws2 | ws1 | ws2 | ws1 | ws2 | ws1 | ws2 | |
25° | −0.0006 | −0.0009 | −0.0022 | −0.0025 | 0.0001 | −0.0002 | 0.0027 | 0.0023 |
35° | −0.0005 | −0.0013 | −0.002 | −0.0016 | 0.0008 | −0.0007 | 0.0028 | 0.002 |
45° | −0.0003 | −0.0007 | −0.0002 | −0.0005 | 0.0007 | 0.0007 | 0.004 | 0.0005 |
55° | −0.0025 | −0.0023 | 0.0019 | 0.0012 | 0.0008 | 0.0002 | 0.0025 | 0.0004 |
65° | −0.0111 | −0.0056 | −0.0019 | 0.0053 | −0.0027 | 0.0009 | −0.0057 | −0.0013 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Cheng, X.; Meng, X.; Zhou, G. A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface. Sensors 2019, 19, 2166. https://doi.org/10.3390/s19092166
Cheng J, Cheng X, Meng X, Zhou G. A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface. Sensors. 2019; 19(9):2166. https://doi.org/10.3390/s19092166
Chicago/Turabian StyleCheng, Jie, Xiaolong Cheng, Xiangchen Meng, and Guanhua Zhou. 2019. "A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface" Sensors 19, no. 9: 2166. https://doi.org/10.3390/s19092166
APA StyleCheng, J., Cheng, X., Meng, X., & Zhou, G. (2019). A Monte Carlo Emissivity Model for Wind-Roughened Sea Surface. Sensors, 19(9), 2166. https://doi.org/10.3390/s19092166