Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring
Abstract
:1. Introduction
1.1. Structural Health Monitoring + Nondestructive Evaluations
1.2. Ground Penetrating Radar
1.3. GPR Attribute Analysis
2. Materials and Methods
2.1. Streicker Bridge
2.2. Data Collection
2.3. Data Processing
2.4. Attribute Analyses
3. Results
3.1. Qualitative Analysis
3.2. Quantitative Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GPR | Ground penetrating radar |
SHM | Structural Health Monitoring |
NDE/NDT | Nondestructive evaluation/nondestructive testing |
SE | Southeast |
NE | Northeast |
EM | electromagnetic |
GSSI | Geophysical Survey Systems Inc. |
References
- Sigurdardottir, D.H.; Glisic, B. On-site validation of fiber-optic methods for structural health monitoring: Streicker Bridge. J. Civ. Struct. Health Monit. 2015, 5, 529–549. [Google Scholar] [CrossRef]
- Morris, I.M.; Abdel-Jaber, H.; Glisic, B. Ground penetrating radar as a monitoring tool: Mapping internal features with attribute analysis. In Proceedings of the 8th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII), Brisbane, Australia, 5–8 December 2017. [Google Scholar]
- Morris, I.M.; Abdel-Jaber, H.; Glisic, B. Ground penetrating radar for material characterization in structural health monitoring applications. In Proceedings of the 11th International Workshop on SHM (IWSHM), Stanford, CA, USA, 12–14 September 2017. [Google Scholar]
- Annan, A. Ground Penetrating Radar Principles, Procedures, and Applications; Sensors and Software Inc.: Mississauga, ON, Canada, 2003; p. 285. [Google Scholar]
- Jol, H.M. (Ed.) Ground Penetrating Radar Theory and Applications; Elsevier Science: Amsterdam, The Netherlands, 2009; p. 544. [Google Scholar]
- Conyers, L.B.; Goodman, D. Ground Penetrating Radar: An Introduction for Archaeologists; AltaMira: Walnut Creek, CA, USA, 1997; p. 232. [Google Scholar]
- Böniger, U.; Tronicke, J. Subsurface utility extraction and characterization: Combining GPR symmetry and polarization attributes. IEEE Trans. Geosci. Remote Sens. 2011, 50, 736–746. [Google Scholar] [CrossRef]
- Wai-Lok Lai, W.; Dérobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2017. [Google Scholar] [CrossRef]
- Benedetto, A.; Pajewski, L. Civil Engineering Applications of Ground Penetrating Radar; Springer: Cham, Switzerland, 2015; p. 371. [Google Scholar]
- White, J.; Hurlebaus, S.; Shokouhi, P.; Wittwer, A.; Wimsatt, A. Noncontact techniques for monitoring of tunnel linings. Struct. Monit. Maint. 2014, 1, 197–211. [Google Scholar] [CrossRef]
- Yehia, S.; Qaddoumi, N.; Farrag, S.; Hamzeh, L. Investigation of concrete mix variations and environmental conditions on defect detection ability using GPR. NDT E Int. 2014, 65, 35–46. [Google Scholar] [CrossRef]
- Kalogeropoulos, A.; van der Kruk, J.; Hugenschmidt, J.; Bikowski, J.; Bruhwiler, E. Full-waveform GPR inversion to assess chloride gradients in concrete. NDT E Int. 2013, 57, 74–84. [Google Scholar] [CrossRef]
- Hubbard, S.S.; Zhang, J.; Monteiro, P.J.; Peterson, J.E.; Rubin, Y. Experimental detection of reinforcing bar corrosion using nondestructive geophysical techniques. ACI Mater. J. 2003, 100, 501–510. [Google Scholar]
- Barnes, C.; Trottier, J.F.; Forgeron, D. Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects. NDT E Int. 2008, 41, 427–433. [Google Scholar] [CrossRef]
- Pedret Rodes, J.; Perez-Gracia, V.; Martinez-Reguero, A. Evaluation of the GPR frequency spectra in asphalt pavement assessment. Constr. Build. Mater. 2015, 96, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Olhoeft, G.R. Maximizing the information return from ground penetrating radar. J. Appl. Geophys. 2000, 43, 175–187. [Google Scholar] [CrossRef]
- Smith, S.S.; Olhoeft, G.R. Automatic Processing and Modeling of GPR Data for Pavement. In Proceedings of the Eighth International Conference on Ground Penetrating Radar, Cold Coast, Australia, 27 April 2000; Noon, D.A., Stickley, G.F., Longstaff, D., Eds.; Volume 4084, pp. 188–193. [Google Scholar]
- Lai, W.L.; Kou, S.C.; Tsang, W.F.; Poon, C.S. Characterization of concrete properties from dielectric properties using ground penetrating radar. Cem. Concr. Res. 2009, 39, 687–695. [Google Scholar] [CrossRef]
- Van Beek, A.; Hilhorst, M. Dielectric measurements to characterize the microstructural changes of young concrete. Heron 1999, 44, 3–17. [Google Scholar]
- Leucci, G. Ground Penetrating Radar: An Application to Estimate Volumetric Water Content and Reinforced Bar Diameter in Concrete Structures. J. Adv. Concr. Technol. 2012, 10, 411–422. [Google Scholar] [CrossRef]
- Laurens, S.; Balayssac, J.P.; Rhazi, J.; Klysz, G.; Arliguie, G. Non-destructive evaluation of concrete moisture by GPR: Experimental study and direct modeling. Mater. Struct. Constr. 2005, 38, 827–832. [Google Scholar] [CrossRef]
- Soutsos, M.; Bungey, J.; Millard, S.; Shar, M.; Patterson, A. Dielectric properties of concrete and their influence on radar testing. NDT E Int. 2001, 34, 419–425. [Google Scholar] [CrossRef]
- Klotzsche, A.; Jonard, F.; Looms, M.; van der Kruk, J.; Huisman, J. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Lai, W.L.; Kind, T.; Wiggenhauser, H. A study of concrete hydration and dielectric relaxation mechanism using ground penetrating radar and short-time Fourier transform. EURASIP J. Adv. Signal Process. 2010, 2010, 12. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Van Dam, R.L. Calibration functions for estimating soil moisture from GPR dielectric constant measurements. Commun. Soil Sci. Plant Anal. 2014, 45, 392–413. [Google Scholar] [CrossRef]
- Brovelli, A.; Cassiani, G. Linking soil properties to permittivity data: Beyond the refractive index model. In Proceedings of the CMWR XVI—Computational Methods in Water Resources, Copenhagen, Denmark, 19–22 June 2006; pp. 1–8. [Google Scholar]
- Rust, A.C.; Russell, J.K.; Knight, R.J. Dielectric constant as a predictor of porosity in dry volcanic rocks. J. Volcanol. Geotherm. Res. 1999, 91, 79–96. [Google Scholar] [CrossRef]
- Agliata, R.; Greco, R.; Motto, L. Moisture Measurements in Heritage Masonries: A Review of Current Techniques. Mater. Eval. 2018, 76, 1478–1487. [Google Scholar]
- Breysse, D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods. Constr. Build. Mater. 2012, 33, 139–163. [Google Scholar] [CrossRef]
- Ju, M.; Park, K.; Oh, H. Estimation of Compressive Strength of High Strength Concrete Using Non-Destructive Technique and Concrete Core Strength. Appl. Sci. 2017, 7, 1249. [Google Scholar] [CrossRef]
- Dos Santos, V.R.N.; Al-Nuaimy, W.; Porsani, J.L.; Hirata, N.S.T.; Alzubi, H.S. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets. J. Appl. Geophys. 2014, 100, 32–43. [Google Scholar] [CrossRef]
- Doğan, M.; Turhan-Sayan, G. Preprocessing of A-scan GPR data based on energy features. In Proceedings of the SPIE Defense + Security, Baltimore, MD, USA, 3 May 2016; Bishop, S.S., Isaacs, J.C., Eds.; Volume 9823, pp. 98231E1–98231E8. [Google Scholar] [CrossRef]
- Allroggen, N.; Tronicke, J. Attribute-based analysis of time-lapse ground-penetrating radar data. Geophysics 2016, 81, H1–H8. [Google Scholar] [CrossRef]
- Pettinelli, E.; Di Matteo, A.; Beaubien, S.E.; Mattei, E.; Lauro, S.E.; Galli, A.; Vannaroni, G. A Controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties. J. Appl. Geophys. 2014, 101, 68–76. [Google Scholar] [CrossRef]
- Burton, B.L.; Olhoeft, G.R.; Powers, M.H. Frequency spectral analysis of GPR data over a crude oil spill. In Proceedings of the Tenth International Conference on Ground Penetrating Radar, Delft, The Netherlands, 21–24 June 2004. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M.; Tian, G. Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection. J. Appl. Geophys. 2013, 97, 107–117. [Google Scholar] [CrossRef]
- Sigurdardottir, D.H. Strain-Based Monitoring Methods for Beam-Like Structures. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2015. [Google Scholar]
- Hubbel, D.; Glisic, B. Detection and characterization of early-age thermal cracks in high performance concrete. ACI Mater. J. 2013, 110, 323–330. [Google Scholar]
- Abdel-Jaber, H.; Glisic, B. Structural Health Monitoring methods for the evaluation of prestressing forces and prerelease cracks. Front. Built Environ. 2016, 2, 20. [Google Scholar] [CrossRef]
- Abdel-Jaber, H.; Glisic, B. A method of the on-site determination of prestressing forces using long-gauge fiber optic strain sensors. Smart Mater. Struct. 2014, 23, 75004. [Google Scholar] [CrossRef]
- Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring. In Proceedings of the SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017, Portland, OR, USA, 19 April 2017; p. 1016929. [Google Scholar]
- Reilly, J.; Glisic, B. Identifying time periods of minimal thermal gradient for temperature driven structural health monitoring. Sensors 2018, 18, 734. [Google Scholar] [CrossRef] [PubMed]
- Sigurdardottir, D.; Afonso, J.; Hubbell, D.; Glisic, B. Streicker Bridge: A two-year monitoring overview. In Bridge Maintenance, Safety, Management, Resilience and Sustainability, Proceedings of the Sixth International IABMAS Conference, Stresa, Lake Maggiore, Italy, 8–12 July 2012; Biondini, F., Frangopol, D.M., Eds.; Taylor and Francis Group: Abingdon-on-Thames, UK, 2012; pp. 790–797. [Google Scholar]
- GSSI. Radan 7 User’s Manual; GSSI: Nashua, NH, USA, 2003; p. 135. [Google Scholar]
- Liu, L.; Lane, J.W.; Quan, Y. Radar attenuation tomography using the centroid frequency downshift method. J. Appl. Geophys. 1998, 40, 105–116. [Google Scholar] [CrossRef]
- Alwash, M.; Breysse, D.; Sbartai, Z.M. Non-destructive strength evaluation of concrete: Analysis of some key factors using synthetic simulations. Constr. Build. Mater. 2015, 99, 235–245. [Google Scholar] [CrossRef]
- ASTM. ASTM C597-16 Standard Test Method for Pulse Velocity Through Concrete; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
Class | Attribute († Unitless) | Source | Data Preparation | Comparison Level | Expectation |
---|---|---|---|---|---|
reflection (time domain, amplitude) | † maximum amplitude | Time zero, dewow, truncation (same number of samples, remove bottom of deck when present) | trace, scan, and leg (mean) | Identify differences between strength of reflector in two concretes with different strengths | |
† maximum absolute amplitude | |||||
† maximum intensity | |||||
propagation (time domain, amplitude) | † total energy | Time zero, dewow, truncation (same number of samples, remove bottom of deck when present) | trace, scan, and leg (mean) | Identify differences between amplitudes for a whole trace in two concretes with different strengths | |
† total area | |||||
† total absolute area | |||||
electromagnetic attribute | velocity (m/ns) dielectric constant | geometric hyperbola fitting and | automatic gain control applied | scan, leg (mean) | Assess sensitivity of fundamental EM attributes in differentiating the two concretes with different strength |
instantaneous reflection attribute | † instantaneous amplitude | Hilbert transform raw truncated trace → | trace, scan, leg (mean) | Identify differences between non-amplitude attributes in two concretes with different strengths | |
instantaneous phase (rad) | |||||
instantaneous frequency (Hz) | |||||
frequency attribute | centroid frequency (Hz) | Hilbert transform raw truncated trace → → FFT to frequency domain | scan, leg (mode) | Identify differences between attenuation of frequency components in two concretes with different strength |
Transect | Maximum | Maximum Absolute Amplitude | Absolute Area | Total Energy | |||||
---|---|---|---|---|---|---|---|---|---|
SE | NE | SE | NE | SE | NE | SE | NE | SE | NE |
9 | 30 | 1.42 | 1.26 | 1.42 | 1.23 | 1.64 | 1.37 | 2.63 | 1.96 |
10 | 29 | 1.30 | 1.00 | 1.31 | 1.04 | 1.32 | 1.00 | 1.62 | 1.00 |
16 | 23 | 1.10 | 1.38 | 1.00 | 1.31 | 1.35 | 1.83 | 1.30 | 2.46 |
Transect | Average Instantaneous Amplitude (Norm.) | Average Instantaneous Frequency (GHz) | |||
---|---|---|---|---|---|
SE | NE | SE | NE | SE | NE |
10 | 29 | 1.1 | 1 | 8.61 | 8.81 |
16 | 23 | 1.34 | 1.28 | 7.67 | 7.64 |
19 | 20 | 1.12 | 1.36 | 7.37 | 6.69 |
SE | NE | |
---|---|---|
mean | 6.65 | 6.99 |
median | 6.53 | 6.90 |
mode | 6.26 | 6.90 |
st. dev. | 0.59 | 0.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, I.; Abdel-Jaber, H.; Glisic, B. Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring. Sensors 2019, 19, 1637. https://doi.org/10.3390/s19071637
Morris I, Abdel-Jaber H, Glisic B. Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring. Sensors. 2019; 19(7):1637. https://doi.org/10.3390/s19071637
Chicago/Turabian StyleMorris, Isabel, Hiba Abdel-Jaber, and Branko Glisic. 2019. "Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring" Sensors 19, no. 7: 1637. https://doi.org/10.3390/s19071637
APA StyleMorris, I., Abdel-Jaber, H., & Glisic, B. (2019). Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring. Sensors, 19(7), 1637. https://doi.org/10.3390/s19071637