Small-Target Detection between SAR Images Based on Statistical Modeling of Log-Ratio Operator
Abstract
:1. Introduction
- By transforming the image ratio into the log-scale domain, we derive the PDF of the LR statistics. Moreover, ML estimates [34] of the parameters in the LR PDF are derived analytically.
- The change detection of vehicles based on the measured data is assessed by combining the proposed parameter estimation and the CFAR technique. As a result, the usefulness of the proposed distribution model and the effectiveness of the corresponding parameter estimation are verified for small target detection.
2. Modeling of LR Statistics
2.1. LR Statistics and Distribution
2.2. ML Estimation
3. Applications to Small target Detection
3.1. Data Description
3.2. Model Fitting
3.3. Detection Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- White, R.G. Change detection in SAR imagery. Int. J. Remote Sens. 1990, 12, 339–360. [Google Scholar] [CrossRef]
- Liew, S.C.; Kam, S.P.; Tuong, T.P.; Chen, P.; Minh, V.Q.; Lim, H. Application of multitemporal ERS-1 synthetic aperture radar in delineating rice cropping systems in the Mekong River Delta, Vietnam. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1412–1420. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Unsupervised extraction of flood-induced backscatter changes in SAR data using Markov modeling on irregular graphs. IEEE Trans. Geosci. Remote Sens. 2011, 49, 251–263. [Google Scholar] [CrossRef]
- Dellepiane, S.G.; Angiati, E. A new method for cross-normalization and multitemporal visualization of SAR images for detection of flooded areas. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2765–2779. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A split-based approach to unsupervised change detection in large-sized multitemporal images: Application to Tsunami-damage assessment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1658–1670. [Google Scholar] [CrossRef]
- Dekker, R.J. High-resolution radar damage assessment after the earthquake in Haiti on 12 January 2010. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 960–970. [Google Scholar] [CrossRef]
- Yousif, O.; Ban, Y. Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2032–2041. [Google Scholar] [CrossRef]
- Ban, Y.; Yousif, O. Multitemporal spaceborne SAR data for urban change detection in China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 1087–1094. [Google Scholar] [CrossRef]
- Hame, T.; Heiler, I.; Miguel-Ayanz, J.S. An unsupervised change detection and recognition system for forestry. Int. J. Remote Sens. 1998, 196, 1079–1099. [Google Scholar] [CrossRef]
- Grover, K.; Quegan, S.; da Costa Fretias, C. Quantitative estimation of tropical forest cover by SAR. IEEE Trans. Geosci. Remote Sens. 1999, 37, 479–490. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Chatelain, F.; Tourneret, J.-Y.; Inglada, J. Change detection in multisensorSAR images using bivariate Gamma distribution. IEEE Trans. Image Process. 2008, 17, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Cao, Y.; Wu, Q. A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 307–311. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Zoppetti, C. Nonparametric change detection in multitemporal SAR images based on Mean-Shift clustering. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2022–2031. [Google Scholar] [CrossRef]
- Pratola, C.; Frate, F.D.; Schiavon, G.; Solimini, D. Toward fully automatic detection of changes in suburban areas from VHR SAR images by combining multiple Neural-Network models. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2055–2066. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A hierarchical approach to change detection in very high resolution SAR images for surveillance applications. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2042–2054. [Google Scholar] [CrossRef]
- Dierking, W.; Skriver, H. Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery. IEEE Trans. Geosci. Remote Sens. 2002, 40, 618–636. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, M.; Ulander, L.M.H.; Pierson, W.; Gustavsson, A. A challenge problem for detection of targets in foliage. Proc. Algorithm Synth. Aperture Radar Imag. XIII 2006, 6237, 62370K. [Google Scholar]
- Gao, G.; Wang, X.; Niu, M.; Zhou, S. Modified log-ratio operator for change detection of synthetic aperture radar targets in forest concealment. J. Appl. Remote Sens. 2014, 8, 083583. [Google Scholar] [CrossRef]
- Oliver, C.J.; Quegan, S. Understanding Synthetic Aperture Radar Images; Artech House: Norwood, MA, USA, 1998. [Google Scholar]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens. 2007, 45, 218–236. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, Q.; Jiang, Y.; Kuang, G. A threshold selection method using two SAR change detection measures based on the Markov random field model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 287–291. [Google Scholar] [CrossRef]
- Carincotte, C.; Derrode, S.; Bourennane, S. Unsupervised change detection on SAR images using fuzzy hidden Markov chains. IEEE Trans. Geosci. Remote Sens. 2006, 44, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.J.M.; Van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Bazi, Y.; Bruzzone, L.; Melgani, F. Image thresholding based on the EM algorithm and the generalized Gaussian distribution. Pattern Recognit. 2007, 40, 619–634. [Google Scholar] [CrossRef]
- Bazi, Y.; Bruzzone, L.; Melgani, F. Automatic identification of the number and values of decision thresholds in the log-ratio image for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 349–353. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2972–2982. [Google Scholar] [CrossRef] [Green Version]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Z.; Ma, J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 2012, 21, 2141–2151. [Google Scholar] [CrossRef]
- Lee, J.S.; Hoppel, K.W.; Mango, S.A.; Miller, A.R. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1017–1028. [Google Scholar]
- Joughin, I.R.; Winebrenner, D.P.; Percival, D.B. Probability density functions for multilook polarimetric signatures. IEEE Trans. Geosci. Remote Sens. 1994, 32, 562–574. [Google Scholar] [CrossRef]
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Bronshtein, I.N.; Semendyayev, K.A.; Musiol, G.; Muehlig, H. Handbook of Mathematics, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bujor, F.; Trouve, E.; Valet, L.; Nicolas, J.M.; Rudant, J.P. Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2073–2084. [Google Scholar] [CrossRef]
- Dekker, R.J. Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens. 1998, 19, 1133–1146. [Google Scholar] [CrossRef]
- Sharifi, K.; Leon-Garcia, A. Estimation of shape parameter for generalized Gaussian distributions in subband decomposition of video. IEEE Trans. Circuits Syst. Video Technol. 1995, 5, 52–56. [Google Scholar] [CrossRef]
- Niehsen, W. Generalized Gaussian modeling of correlated signal sources. IEEE Trans. Signal Process. 1999, 47, 217–219. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
Experiment No. | Window Size | GG Model | Proposed Model |
---|---|---|---|
1 | 1 × 1 | (0.0455, 1.6568, 1.2908) | (1.0465, 0.9714, 0.5514) |
5 × 5 | (0.0429, 0.6047, 1.7263) | (1.0439, 4.1180, 0.6049) | |
2 | 1 × 1 | (0.1893, 1.6671, 1.3012) | (1.2083, 0.9731, 0.5357) |
5 × 5 | (0.1852, 0.6201, 1.7589) | (1.2034, 4.3307, 0.5333) |
Experiment No. | Window Size | ||
---|---|---|---|
GG Model | Proposed Model | ||
1 | 1 × 1 | 0.0015 | 0.0003 |
5 × 5 | 0.0024 | 0.0013 | |
2 | 1 × 1 | 0.0016 | 0.0004 |
5 × 5 | 0.0014 | 0.0008 |
Experiment No. | Number of Targets | Number of Detected Targets | Actual FAR | ||
---|---|---|---|---|---|
GG Model | Proposed Model | GG Model | Proposed Model | ||
1 | 50 | 50 | 50 | 0.7064 × 10−3 | 0.2230 × 10−3 |
2 | 50 | 50 | 50 | 0.8113 × 10−3 | 0.4956 × 10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Huang, K.; Gao, G. Small-Target Detection between SAR Images Based on Statistical Modeling of Log-Ratio Operator. Sensors 2019, 19, 1431. https://doi.org/10.3390/s19061431
Chen C, Huang K, Gao G. Small-Target Detection between SAR Images Based on Statistical Modeling of Log-Ratio Operator. Sensors. 2019; 19(6):1431. https://doi.org/10.3390/s19061431
Chicago/Turabian StyleChen, Chao, Kuihua Huang, and Gui Gao. 2019. "Small-Target Detection between SAR Images Based on Statistical Modeling of Log-Ratio Operator" Sensors 19, no. 6: 1431. https://doi.org/10.3390/s19061431
APA StyleChen, C., Huang, K., & Gao, G. (2019). Small-Target Detection between SAR Images Based on Statistical Modeling of Log-Ratio Operator. Sensors, 19(6), 1431. https://doi.org/10.3390/s19061431