Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Region
2.2. Observation Data
- (1)
- The soil sample of each site was uniformly mixed and placed into an aluminum box, which would be weighed and recorded, then transported back to the laboratory for drying until the soil was completely dehydrated, cooled to room temperature and weighed in a cool place, the soil moisture was calculated
- (2)
- The collected soil samples were transported to the laboratory, the plant and gravel impurities were removed after air drying, the soil was ground and sieved with a 0.5 mm aperture sieve, and then, physical and chemical analyses were conducted to measure soil texture and soil bulk density.
2.3. Satellite Data
2.3.1. Sentinel-1 Data
- (1)
- Multi-Look processing (generating power images) makes the image texture structure close to the real situation and reduces the speckle noise.
- (2)
- Filtering and denoising processing (refined-Lee filtering, 3 pixels by 3 pixel window) were performed to eliminate speckle noise.
- (3)
- Geocoding was performed, using digital elevation maps for geometric fine correction.
- (4)
- Radiation calibration was conducted to obtain the backscattering coefficient in the multipolarization mode of the target region.
2.3.2. Landsat-8 OLI Data
3. Methodology
3.1. Water-Cloud Model
3.2. Advanced Integral Equation Model
4. Results and Discussion
4.1. Analysis of Responses of the Backscattering Coefficient and Surface Parameters
4.1.1. Analysis of Relationship Between the Backscattering Coefficient and Soil Moisture
4.1.2. Analysis of the Relationship Between Backscattering Coefficient and Surface Roughness
4.2. Constructing the Soil Moisture Inversion Model
4.3. Removing the Vegetation Effect
4.4. Remote Sensing Inversion of the Spatial Distribution of Soil Moisture
5. Conclusions
- (1)
- Under different root mean square heights and correlation lengths, the backscattering coefficients of both VV and VH polarization modes have a good logarithmic relationship with soil moisture, and the relationship remains unchanged. Under the given incident angle, the backscattering coefficient is independent of the surface roughness and is a function of the soil moisture content.
- (2)
- According to the actual situation of the study area, the surface roughness parameters are used to characterize the surface roughness, and the relationship between the combined roughness and the backscatter coefficient was analyzed. Under the smooth surface (root mean square height 0.3–0.9 cm), there is a dominant logarithmic relationship model between the two; under the rough surface (root mean square height is 0.9–2.5 cm), the logarithmic relationship cannot simply be used to describe the relationship between the two, and it is necessary to determine a suitable model.
- (3)
- A quantitative remote sensing inversion model of soil moisture under the dual-polarization condition was established based on the logarithmic relationship. The model is based on the theoretical AIEM model and can better reflect the relationship between the backscattering coefficient and soil moisture. Compared with the traditional empirical model, it is less restricted by the region and has better universality. The correlation between the model simulation results and the measured values is very strong, indicating that the model established in this study can be used for the inversion of surface soil moisture.
Author Contributions
Funding
Conflicts of Interest
References
- Lo, M.H.; Famiglietti, J.S. Irrigation in California’s Central Valley Strengthens the Southwestern U. S. Monsoon. Geophys. Res. Lett. 2013, 40, 301–306. [Google Scholar] [CrossRef]
- Hong, Z.; Zhang, W.; Yu, C.; Zhang, D.; Li, L.; Meng, L. SWCTI: Surface Water Content Temperature Index for Assessment of Surface Soil Moisture Status. Sensors 2018, 18, 2875. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Lei, T.; Yan, Q.; Chen, Z.; Dong, Y.J.C. A near-infrared reflectance sensor for soil surface moisture measurement. Comput. Electron. Agric. 2013, 99, 101–107. [Google Scholar] [CrossRef]
- Sorooshian, S.; Li, J.; Hsu, K.L.; Gao, X. How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. JGR Atmos. 2011, 116, D6. [Google Scholar] [CrossRef]
- Tu, C.; He, T.; Lu, X.; Luo, Y.; Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. CATENA 2018, 163, 204–209. [Google Scholar] [CrossRef]
- Procházka, P.; Hönig, V.; Maitah, M.; Pljučarská, I.; Kleindienst, J. Evaluation of Water Scarcity in Selected Countries of the Middle East. Water 2018, 10, 1482. [Google Scholar] [CrossRef]
- Machiwal, D.; Gupta, A.; Jha, M.K.; Kamble, T.J.T. Analysis of trend in temperature and rainfall time series of an Indian arid region: Comparative evaluation of salient techniques. Teor. Appl. Clim. 2018, 141, 1–20. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, Q.; Zhao, X.; Zhang, Y.J.W. Simulation and Prediction of Climate Variability and Assessment of the Response of Water Resources in a Typical Watershed in China. Water 2016, 8, 490. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; Mccabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 175. [Google Scholar] [CrossRef]
- Qiaozhen, M.U.; Zhao, M.; Steven, W.J. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar]
- Cashion, J.; Lakshmi, V.; Bosch, D.; Jackson, T.J. Microwave remote sensing of soil moisture: Evaluation of the TRMM microwave imager (TMI) satellite for the Little River Watershed Tifton, Georgia. J. Hydrol. 2005, 307, 242–253. [Google Scholar] [CrossRef]
- Yan, F.; Qin, Z.; Li, M.; Li, W. Progress in soil moisture estimation from remote sensing data for for agricultural drought monitoring. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VI, Stockholm, Sweden, 11–14 September 2006; pp. 114–121. [Google Scholar]
- Bai, X.; He, B.; Li, X.; Zeng, J.; Wang, X.; Wang, Z.; Zeng, Y.; Su, Z. First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau. Remote Sens. 2017, 9, 714. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355. [Google Scholar] [CrossRef]
- Dubois, P.C. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dieletric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Pettinato, S.; Santi, E.; Paloscia, S.; Pampaloni, P.; Fontanelli, G. The Intercomparison of X-Band SAR Images from COSMO-SkyMed and TerraSAR-X Satellites: Case Studies. Remote Sens. 2013, 5, 2928–2942. [Google Scholar] [CrossRef]
- Choker, M.; Baghdadi, N.; Zribi, M.; El Hajj, M.; Paloscia, S.; Verhoest, N.E.C.; Lievens, H.; Mattia, F. Evaluation of the Oh, Dubois and IEM Backscatter Models Using a Large Dataset of SAR Data and Experimental Soil Measurements. Water 2017, 9, 38. [Google Scholar] [CrossRef]
- Wu, T.D.; Chen, K.S.; Shi, J.; Fung, A.K. A transition model for the reflection coefficient in surface scattering. IEEE Trans. Geosci. Remote Sens. 1998, 39, 2040–2050. [Google Scholar]
- He, L.; Jing, M.C.; Chen, K.S. Simulation and SMAP Observation of Sun-Glint Over the Land Surface at the L-Band. IEEE Trans. Geosci. Remote Sens. Lett. 2017, 55, 2589–2604. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Lievens, H.; Verhoest, N.E.C. On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters. IEEE Trans. Geosci. Remote Sens. Lett. 2011, 8, 740–744. [Google Scholar] [CrossRef]
- He, B.; Xing, M.; Bai, X. A synergistic methodology for soil moisture estimation in an alpine prairie using radar and optical satellite data. Remote Sens. 2014, 6, 10966–10985. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Yao, S.; Wang, Q.; Zeng, J.; Zhao, S.; Ma, J. Soil Moisture Retrieval from the Chinese GF-3 Satellite and Optical Data over Agricultural Fields. Sensors 2018, 18, 2675. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Di, L.; Yu, E.; Lin, L.; Zhang, C.; Tang, J. Rapid Flood Progress Monitoring in Cropland with NASA SMAP. Remote Sens. 2019, 11, 191. [Google Scholar] [CrossRef]
- Meyer, T.; Weihermüller, L.; Vereecken, H.; Jonard, F. Vegetation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the Growth Cycle of a Winter Wheat. Remote Sens. 2018, 10, 1637. [Google Scholar] [CrossRef]
- Gherboudj, I.; Magagi, R.; Berg, A.A.; Toth, B. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sens. Environ. 2011, 115, 33–43. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, T.; Shao, Y.; Gong, H.; Liu, L.; Xie, K. Modeling and Mapping Soil Moisture of Plateau Pasture Using RADARSAT-2 Imagery. Remote Sens. 2015, 7, 1279–1299. [Google Scholar] [CrossRef] [Green Version]
- Pratola, C.; Barrett, B.; Gruber, A.; Dwyer, E. Quality Assessment of the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over Spain, Ireland and Finland. Remote Sens. 2015, 7, 15388–15423. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska-Zielinska, K.; Budzynska, M.; Tomaszewska, M.; Malinska, A.; Gatkowska, M.; Bartold, M.; Malek, I. Assessment of Carbon Flux and Soil Moisture in Wetlands Applying Sentinel-1 Data. Remote Sens. 2016, 8, 756. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Mexis, F.-D.K.; Vozinaki, A.-E.K.; Daliakopoulos, I.N.; Tsanis, I.K. Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach. Sensors 2017, 17, 1455. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Z.; Paloscia, S.; Zhang, H.; Wu, F.; Wu, Q. Permafrost Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of Northern Tibet, China. Remote Sens. 2018, 10, 1577. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.; Yang, J. Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal. Remote Sens. 2017, 9, 1197. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, N.; Song, X.F.; Li, Z.Y.; Niu, Z.J.; Waves, M. A new method for soil moisture inversion in vegetation-covered area based on Radarsat 2 and Landsat 8. J. Infrared Millim. Waves 2016, 35, 609–616. [Google Scholar]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part i-bare soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- Zhang, F.; Tashpolat, T.; Ding, J.L.; Tian, Y.; Mamat, S. Relationships between soil salinization and spectra in the delta oasis of Weigan and Kuqa Rivers. CAB Direct 2009, 22, 227–235. [Google Scholar]
- Paloscia, S.; Pettinato, S.; Santi, E.; Pierdicca, N.; Pulvirenti, L.; Notarnicola, C.; Pace, G.; Reppucci, A. Soil moisture mapping using Sentinel 1 images: The proposed approach and its preliminary validation carried out in view of an operational product. In Proceedings of the ISPIE, International Society for Optical Engineering, Prague, Czech Republic, 26 October 2011. [Google Scholar]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Nigara, T. Soil salinization monitoring based on synergy monitoring model of remote sensing and electromagnetic induction in Ugan-Kucha delta oasis. Ph.D. Thesis, Xinjiang University, Xinjiang, China, 6 July 2014. [Google Scholar]
- Wu, T.D.; Chen, K.S.; Shi, J.; Lee, H.W.; Fung, A.K. A Study of an AIEM Model for Bistatic Scattering From Randomly Rough Surfaces. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2584–2598. [Google Scholar]
- Lee, H.W.; Chen, K.S.; Wu, T.D.; Shi, J.C. An update of Frensnel reflection coefficient for AIEM model. IEEE Trans. Geosci Remote Sens. Lett. 2004, 1, 75–77. [Google Scholar]
- Jiang, L.M. Passive microwave remote sensing of snow water equivalence study. Ph.D. Thesis, Beijing Normal University, Beijing, China, 23 August 2006. [Google Scholar]
- Davidson, M.W.J.; Mattia, F.; Satalino, G.; Verhoest, N.E.C.; Toan, T.L.; Borgeaud, M.; Louis, J.M.B.; Attema, E. Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1651–1658. [Google Scholar] [CrossRef]
- Remond, A.; Deroin, J.P. Empirical and theoretical backscattering behaviour as a function of roughness for arid land surface. In Remote Sensing—A Scientific Vision for Sustainable Development, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Singapore, Singapore, 3–8 August 1997; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
- Zribi, M.; Paille, J.; Ciarletti, V.; Taconet, O.; Boissard, P.; Chapron, M.; Rabin, B. Modelisation of roughness and microwave scattering of bare soil surfaces based on fractal Brownian geometry. In Sensing and Managing the Environment. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1988; IEEE International: Piscataway, NJ, USA, 1998; pp. 1213–1215. [Google Scholar]
- Shi, J.; Wang, J.; Hsu, A.Y.; O’Neill, P.E.; Engman, E.T. Estimation of bare soil moisture and surface roughness parameters using l-band sar image data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1254–1266. [Google Scholar]
- Oh, Y.; Hong, J.Y.; Lee, S. A Simple Microwave Backscattering Model for Vegetation Canopies. J. Korea Electromagn. Soc. 2005, 5, 183–188. [Google Scholar]
- Zribi, M.; Dechambre, M. A new empirical model to inverse soil moisture and roughness using two radar configurations. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toronto, Canada, 24–28 June 2002. [Google Scholar]
- Huang, T.; Li, B.; Shen, D.; Cao, J.; Mao, B. Analysis of the grain loss in harvest based on logistic regression. Proc. Comp. Sci. 2017, 122, 698–705. [Google Scholar] [CrossRef]
- Lin, G.-F.; Chang, M.-J.; Huang, Y.-C. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Eng. Geol. 2017, 224, 62–74. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index wi (r900/r970). Int. J. Remote Sens. 1997, 18, 7. [Google Scholar] [CrossRef]
- Serrano, L.; Filella, I.; Peñuelas, J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef]
- Sims, D.A.; Environment, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
Class | Sites | Description |
---|---|---|
Farm | 26 | Planting crops |
Wetland | 5 | Almost all vegetation is shrubs with a high vegetation coverage |
Bare soil | 24 | No vegetation cover |
Grass | 11 | Saline vegetation, shrub |
Salinated land | 28 | No vegetation cover, but there are salt shells on the surface |
Parameter | All Vegetation | Grazing Land | Crop | Grass |
---|---|---|---|---|
A | 0.0012 | 0.0009 | 0.0018 | 0.0014 |
B | 0.091 | 0.032 | 0.138 | 0.084 |
θ | A(θ) | B(θ) | C(θ) | Standard Deviation | R2 | θ | A(θ) | B(θ) | C(θ) | Standard Deviation | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 2.402 | 2.455 | 12.766 | 0.610 | 0.832 | 37 | 3.054 | 3.196 | 4.526 | 0.523 | 0.920 |
13 | 2.479 | 2.497 | 11.789 | 0.656 | 0.828 | 39 | 3.096 | 3.235 | 4.432 | 0.537 | 0.911 |
15 | 2.513 | 2.601 | 10.652 | 0.662 | 0.821 | 41 | 3.143 | 3.289 | 4.315 | 0.458 | 0.929 |
17 | 2.564 | 2.689 | 9..632 | 0.601 | 0.839 | 43 | 3.187 | 3.355 | 4.223 | 0.465 | 0.931 |
19 | 2.603 | 2.742 | 8.698 | 0.678 | 0.825 | 45 | 3.232 | 3.416 | 4.136 | 0.399 | 0.936 |
21 | 2.678 | 2.795 | 7.923 | 0.598 | 0.898 | 47 | 3.297 | 3.496 | 4.045 | 0.425 | 0.929 |
23 | 2.741 | 2.846 | 7.212 | 0.621 | 0.830 | 49 | 3.347 | 3.562 | 4.212 | 0.371 | 0.938 |
25 | 2.796 | 2.899 | 6.625 | 0.635 | 0.828 | 51 | 3.395 | 3.628 | 4.287 | 0.457 | 0.929 |
27 | 2.846 | 2.932 | 5.945 | 0.641 | 0.824 | 53 | 3.438 | 3.701 | 4.378 | 0.565 | 0.901 |
29 | 2.898 | 2.998 | 5.321 | 0.580 | 0.902 | 55 | 3.486 | 3.789 | 4.567 | 0.498 | 0.916 |
31 | 2.938 | 3.021 | 4.852 | 0.601 | 0.839 | 57 | 3.531 | 3.869 | 4.579 | 0.465 | 0.923 |
33 | 2.996 | 3.079 | 4.765 | 0.633 | 0.829 | 59 | 3.597 | 3.945 | 4.583 | 0.441 | 0.925 |
35 | 3.012 | 3.148 | 4.679 | 0.574 | 0.900 | 61 | 3.621 | 4.012 | 4.635 | 0.432 | 0.931 |
θ | A(θ) | B(θ) | C(θ) | Standard Deviation | R2 | θ | A(θ) | B(θ) | C(θ) | Standard Deviation | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 2.474 | 2.405 | 12.380 | 0.607 | 0.831 | 37 | 2.954 | 3.387 | 1.103 | 0.526 | 0.919 |
13 | 2.492 | 2.604 | 11.565 | 0.678 | 0.825 | 39 | 2.982 | 3.416 | 0.568 | 0.539 | 0.912 |
15 | 2.512 | 2.796 | 10.638 | 0.659 | 0.827 | 41 | 3.012 | 3.469 | -0.053 | 0.465 | 0.926 |
17 | 2.537 | 2.832 | 9.658 | 0.600 | 0.852 | 43 | 3.073 | 3.506 | -0.465 | 0.403 | 0.932 |
19 | 2.578 | 2.901 | 8.065 | 0.687 | 0.815 | 45 | 3.146 | 3.559 | -1.011 | 0.398 | 0.936 |
21 | 2.602 | 2.985 | 7.049 | 0.596 | 0.895 | 47 | 3.201 | 3.625 | -1.368 | 0.423 | 0.930 |
23 | 2.691 | 3.024 | 6.123 | 0.632 | 0.829 | 49 | 3.267 | 3.687 | -1.769 | 0.369 | 0.942 |
25 | 2.725 | 3.068 | 5.326 | 0.645 | 0.823 | 51 | 3.301 | 3.712 | -2.145 | 0.354 | 0.951 |
27 | 2.767 | 3.102 | 4.505 | 0.651 | 0.825 | 53 | 3.364 | 3.765 | -2.687 | 0.312 | 0.962 |
29 | 2.802 | 3.159 | 3.724 | 0.598 | 0.898 | 55 | 3.412 | 3.829 | -3.269 | 0.201 | 0.989 |
31 | 2.842 | 3.211 | 3.012 | 0.603 | 0.836 | 57 | 3.478 | 3.897 | -3.755 | 0.102 | 0.995 |
33 | 2.897 | 3.275 | 2.225 | 0.643 | 0.823 | 59 | 3.521 | 3.946 | -4.052 | 0.326 | 0.960 |
35 | 2.921 | 3.326 | 1.687 | 0.586 | 0.901 | 61 | 3.586 | 4.012 | -4.368 | 0.128 | 0.992 |
Model | Bias | RMSE | Slope |
---|---|---|---|
AIEM | 0.039 | 0.97 | 0.8894 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Ding, J.; Zou, J.; Liu, B.; Zhang, J.; Chen, W. Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage. Sensors 2019, 19, 589. https://doi.org/10.3390/s19030589
Huang S, Ding J, Zou J, Liu B, Zhang J, Chen W. Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage. Sensors. 2019; 19(3):589. https://doi.org/10.3390/s19030589
Chicago/Turabian StyleHuang, Shuai, Jianli Ding, Jie Zou, Bohua Liu, Junyong Zhang, and Wenqian Chen. 2019. "Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage" Sensors 19, no. 3: 589. https://doi.org/10.3390/s19030589
APA StyleHuang, S., Ding, J., Zou, J., Liu, B., Zhang, J., & Chen, W. (2019). Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage. Sensors, 19(3), 589. https://doi.org/10.3390/s19030589