A Quantitative Approach for the Bone-implant Osseointegration Assessment Based on Ultrasonic Elastic Guided Waves
Abstract
:1. Introduction
2. Background
2.1. Implant Design
2.2. Acousto-ultrasonic Concept for Osseointegration Index
3. Methods
3.1. Specimens
3.2. Experimental Setup
4. Experimental Results
4.1. Specimens with Oval Cross-section
4.2. Triangular Specimen
5. Osseointegration Index
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parithimarkalaignan, S.; Padmanabhan, T. Osseointegration: An update. J. Indian Prosthodont. Soc. 2013, 13, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Haket, L.M.; Frölke, J.P.M.; Verdonschot, N.; Tomaszewski, P.K.; van de Meent, H. Periprosthetic cortical bone remodeling in patients with an osseointegrated leg prosthesis. J. Orthop. Res. 2017, 35, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, K.; Brånemark, R. Consequences of non-vascular trans-femoral amputation: A survey of quality of life, prosthetic use and problems. Prosthet. Orthot. Int. 2001, 25, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillingham, T.R.; Pezzin, L.E. Rehabilitation setting and associated mortality and medical stability among persons with amputations. Arch. Phys. Med. Rehabil. 2008, 89, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Van de Meent, H.; Hopman, M.T.; Frölke, J.P. Walking ability and quality of life in subjects with transfemoral amputation: A comparison of osseointegration with socket prostheses. Arch. Phys. Med. Rehabil. 2013, 94, 2174–2178. [Google Scholar] [CrossRef] [PubMed]
- Leijendekkers, R.A.; van Hinte, G.; Frölke, J.P.; van de Meent, H.; Nijhuis-van der Sanden, M.W.; Staal, J.B. Comparison of bone-anchored prostheses and socket prostheses for patients with a lower extremity amputation: A systematic review. Disabil. Rehabil. 2017, 39, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Noyama, Y.; Miura, T.; Ishimoto, T.; Itaya, T.; Niinomi, M.; Nakano, T. Bone loss and reduced bone quality of the human femur after total hip arthroplasty under stress-shielding effects by titanium-based implant. Mater. Trans. 2012, 53, 565–570. [Google Scholar] [CrossRef]
- Gefen, A. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med. Boil. Eng. Comput. 2002, 40, 311–322. [Google Scholar] [CrossRef]
- Tomaszewski, P.; Van Diest, M.; Bulstra, S.; Verdonschot, N.; Verkerke, G.J. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss. J. Biomech. 2012, 45, 1875–1880. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.; Uden, M.; Robinson, P.K.P.; Sooriakumaran, S. Rehabilitation of the transfemoral amputee with an osseointegrated prosthesis: The united kingdom experience. Prosthet. Orthot. Int. 2003, 27, 114–120. [Google Scholar] [CrossRef]
- Hagberg, K.; Brånemark, R. One hundred patients treated with osseointegrated transfemoral amputation prostheses—Rehabilitation perspective. J. Rehabil. Res. Dev. 2009, 46, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Frölke, J.; Leijendekkers, R.; Van de Meent, H. Osseointegrated prosthesis for patients with an amputation. Unfallchirurg 2017, 120, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Chakladar, N.; Harper, L.T.; Parsons, A. Optimisation of composite bone plates for ulnar transverse fractures. J. Mech. Behav. Biomed. Mater. 2016, 57, 334–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, S.; Abel, E. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J. Biomech. 2001, 34, 995–1003. [Google Scholar] [CrossRef]
- Engh, C.A.; McGovern, T.; Bobyn, J.; Harris, W.H. A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J. Bone Jt. Surg. Am. Vol. 1992, 74, 1009–1020. [Google Scholar] [CrossRef]
- Russ, M.; Chiu, W.K.; Ong, W.H.; Tran, T.; Russ, M.; Fitzgerald, M. Development of a novel osseointegrated endoprosthesis, combing orthopaedic and engineering design principles, and structural health monitoring conc. Struct. Health Monit. 2017. [Google Scholar] [CrossRef]
- Brånemark, R.; Berlin, Ö.; Hagberg, K.; Bergh, P.; Gunterberg, B.; Rydevik, B. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients. Bone Jt. J. 2014, 96, 106–113. [Google Scholar] [CrossRef]
- Monument, M.J.; Lerman, D.M.; Randall, R.L. Novel applications of osseointegration in orthopedic limb salvage surgery. Orthop. Clin. 2015, 46, 77–87. [Google Scholar] [CrossRef]
- Bini, S.A.; Johnston, J.O.; Martin, D.L. Compliant prestress fixation in tumor prostheses: Interface retrieval data. Orthopedics 2000, 23, 707–712. [Google Scholar]
- O’Donnell, R.J. Compressive osseointegration of tibial implants in primary cancer reconstruction. Clin. Orthop. Relat. Res. 2009, 467, 2807–2812. [Google Scholar] [CrossRef]
- Kramer, M.; Tanner, B.; Horvai, A.; O’Donnell, R. Compressive osseointegration promotes viable bone at the endoprosthetic interface: Retrieval study of compress® implants. Int. Orthop. 2008, 32, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Aschoff, H.H.; Kennon, R.E.; Keggi, J.M.; Rubin, L.E. Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: An endo-exo device. J.Bone Jt. Surg. 2010, 92, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.; Kenwright, J.; Kershaw, C. Biomechanical measurement of fracture healing. J. Med. Eng. Technol. 1990, 14, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Morshed, S. Current options for determining fracture union. Adv. Med. 2014, 2014, 708574. [Google Scholar] [CrossRef] [PubMed]
- Morshed, S.; Corrales, L.; Genant, H.; Miclau, T., III. Outcome assessment in clinical trials of fracture-healing. JBJS 2008, 90, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Dhert, W.; Verheyen, C.; Braak, L.; De Wijn, J.; Klein, C.; De Groot, K.; Rozing, P. A finite element analysis of the push-out test: Influence of test conditions. J. Biomed. Mater. Res. Part A 1992, 26, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, C.B.; Sennerby, L.; Albrektsson, T. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and vitallium implants. Int. J. Oral Maxillofac. Implants 1991, 6, 131–138. [Google Scholar]
- Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 1998, 11, 491–501. [Google Scholar] [PubMed]
- Shao, F.; Xu, W.; Crocombe, A.; Ewins, D. Natural frequency analysis of osseointegration for trans-femoral implant. Ann. Biomed. Eng. 2007, 35, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Mattei, L.; Longo, A.; Di Puccio, F.; Ciulli, E.; Marchetti, S. Vibration testing procedures for bone stiffness assessment in fractures treated with external fixation. Ann. Biomed. Eng. 2017, 45, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Chiu, W.; Russ, M.; Chiu, Z. Extending structural health monitoring concepts for bone healing assessment. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 491–501. [Google Scholar] [CrossRef]
- Chiu, W.; Ong, W.; Russ, M.; Fitzgerald, M. Simulated vibrational analysis of internally fixated femur to monitor healing at various fracture angles. Procedia Eng. 2017, 188, 408–414. [Google Scholar] [CrossRef]
- Ong, W.; Chiu, W.; Russ, M.; Chiu, Z. Integrating sensing elements on external fixators for healing assessment of fractured femur. Struct. Control Health Monit. 2016, 23, 1388–1404. [Google Scholar] [CrossRef]
- Wong, L.C.Y.; Chiu, W.K.; Russ, M.; Liew, S. Monitoring the Fracture Healing of an Internally Fixated Pelvis Using Vibration Analysis; SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; SPIE: Bellingham, WA, USA, 2013; p. 12. [Google Scholar]
- Kundu, T. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Guyott, C.C.H.; Cawley, P.; Adams, R.D. The non-destructive testing of adhesively bonded structure: A review. J. Adhes. 1986, 20, 129–159. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Yan, F.; Royer, R.L., Jr.; Rose, J.L. Ultrasonic guided wave imaging techniques in structural health monitoring. J. Intell. Mater. Syst. Struct. 2010, 21, 377–384. [Google Scholar] [CrossRef]
- Auld, B.A. Acoustic Fields and Waves in Solids; Рипол Классик: Moscow, Russia, 1973. [Google Scholar]
- Lichtenwalner, P.F.; Dunne, J.P.; Becker, R.S.; Baumann, E.W. Active Damage Interrogation System for Structural Health Monitoring; Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies; International Society for Optics and Photonics: Bellingham, WA, USA, 1997; pp. 186–195. [Google Scholar]
- di Scalea, F.L.; Bonomo, M.; Tuzzeo, D. Ultrasonic guided wave inspection of bonded lap joints: Noncontact method and photoelastic visualization. Res. Nondestruct. Eval. 2001, 13, 153–171. [Google Scholar] [CrossRef]
- Winston, H.A.; Sun, F.; Annigeri, B.S. Structural health monitoring with piezoelectric active sensors. In Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany, 8–11 May 2000; p. V004T004A021. [Google Scholar]
- Michaels, J.E.; Michaels, T.E. An Integrated Strategy for Detection and Imaging of Damage Using a Spatially Distributed Array of Piezoelectric Sensors; Health Monitoring of Structural and Biological Systems 2007; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; p. 653203. [Google Scholar]
- Qing, X.P.; Chan, H.-L.; Beard, S.J.; Kumar, A. An active diagnostic system for structural health monitoring of rocket engines. J. Intell. Mater. Syst. Struct. 2006, 17, 619–628. [Google Scholar] [CrossRef]
- Trendafilova, I.; Manoach, E. Vibration-based damage detection in plates by using time series analysis. Mech. Syst. Signal Process. 2008, 22, 1092–1106. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Qing, X.P.; Ghosh, K.; Karbhar, V.; Chang, F.-K. Health monitoring of bonded composite repair in bridge rehabilitation. Smart Mater. Struct. 2008, 17, 045014. [Google Scholar] [CrossRef]
- Lowe, M.J.; Alleyne, D.N.; Cawley, P. Defect detection in pipes using guided waves. Ultrasonics 1998, 36, 147–154. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for Shm: The Time-Domain Spectral Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mazzotti, M.; Miniaci, M.; Bartoli, I. A numerical method for modeling ultrasonic guided waves in thin-walled waveguides coupled to fluids. Comput. Struct. 2019, 212, 248–256. [Google Scholar] [CrossRef]
- Rizzo, P.; Sorrivi, E.; di Scalea, F.L.; Viola, E. Wavelet-based outlier analysis for guided wave structural monitoring: Application to multi-wire strands. J. Sound Vib. 2007, 307, 52–68. [Google Scholar] [CrossRef]
- De Marchi, L.; Marzani, A.; Miniaci, M. A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides. NDT E Int. 2013, 54, 115–122. [Google Scholar] [CrossRef]
- Miniaci, M.; Gliozzi, A.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N. Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals. Phys. Rev. Lett. 2017, 118, 214301. [Google Scholar] [CrossRef]
- Gliozzi, A.S.; Miniaci, M.; Bosia, F.; Pugno, N.M.; Scalerandi, M. Metamaterials-based sensor to detect and locate nonlinear elastic sources. Appl. Phys. Lett. 2015, 107, 161902. [Google Scholar] [CrossRef] [Green Version]
- Salmanpour, M.S.; Sharif Khodaei, Z.; Aliabadi, M.H.F. Impact Damage Localisation with Piezoelectric Sensors under Operational and Environmental Conditions. Sensors 2017, 17, 1178. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, Y.; Zhang, H.; Ren, G. Baseline Signal Reconstruction for Temperature Compensation in Lamb Wave-Based Damage Detection. Sensors 2016, 16, 1273. [Google Scholar] [CrossRef] [PubMed]
- Ghavamian, A.; Mustapha, F.; Baharudin, B.H.T.; Yidris, N. Detection, Localisation and Assessment of Defects in Pipes Using Guided Wave Techniques: A Review. Sensors 2018, 18, 4470. [Google Scholar] [CrossRef]
- Sun, F.; Sun, Z.; Chen, Q.; Murayama, R.; Nishino, H. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide. Sensors 2016, 16, 1737. [Google Scholar] [CrossRef] [PubMed]
- Protopappas, V.C.; Fotiadis, D.I.; Malizos, K.N. Guided ultrasound wave propagation in intact and healing long bones. Ultrasound Med. Boil. 2006, 32, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.; Duck, F.A.; Cunningham, J.L. Bone vibration measurement using ultrasound: Application to detection of hip prosthesis loosening. Med. Eng. Phys. 2008, 30, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Abendschein, W.; Hyatt, G. Ultrasonics and physical properties of healing bone. J. Trauma Acute Care Surg. 1972, 12, 297–301. [Google Scholar] [CrossRef]
- Lowet, G.; Van der Perre, G. Ultrasound velocity measurement in long bones: Measurement method and simulation of ultrasound wave propagation. J. Biomech. 1996, 29, 1255–1262. [Google Scholar] [CrossRef]
- Protopappas, V.C.; Vavva, M.G.; Fotiadis, D.I.; Malizos, K.N. Ultrasonic monitoring of bone fracture healing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Strantza, M.; Louis, O.; Polyzos, D.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D.G. Wave Dispersion and Attenuation on Human Femur Tissue. Sensors 2014, 14, 15067–15083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggelis, D.G.; Strantza, M.; Louis, O.; Boulpaep, F.; Polyzos, D.; Van Hemelrijck, D. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors. Sensors 2015, 15, 5803–5819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, M.S.; Maciel, C.D.; Pereira, J.C. Proposal for an ultrasonic tool to monitor the osseointegration of dental implants. Sensors 2007, 7, 1224–1237. [Google Scholar] [CrossRef]
- Vayron, R.; Soffer, E.; Anagnostou, F.; Haïat, G. Ultrasonic evaluation of dental implant osseointegration. J. Biomech. 2014, 47, 3562–3568. [Google Scholar] [CrossRef]
- Mathieu, V.; Anagnostou, F.; Soffer, E.; Haïat, G. Ultrasonic evaluation of dental implant biomechanical stability: An in vitro study. Ultrasound Med. Boil. 2011, 37, 262–270. [Google Scholar] [CrossRef]
- Mathieu, V.; Anagnostou, F.; Soffer, E.; Haiat, G. Numerical simulation of ultrasonic wave propagation for the evaluation of dental implant biomechanical stability. J. Acoust. Soc. Am. 2011, 129, 4062–4072. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lynch, J.P. Identification of Bone Fracture in Osseointegrated Prostheses Using Rayleigh Wave Methods; Health Monitoring of Structural and Biological Systems XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; p. 106000T. [Google Scholar]
- Wang, W.; Lynch, J.P. Application of guided wave methods to quantitatively assess healing in osseointegrated prostheses. Struct. Health Monit. 2018, 17. [Google Scholar] [CrossRef]
- Vien, B.; Chiu, W.; Russ, M.; Fitzgerald, M. A stress wave-based health monitoring concept on a novel osseointegrated endoprosthesis design. In Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring (APWSHM), Hong Kong, China, 12–15 November 2018. [Google Scholar]
- Rao, P.; Gill, A. Primary stability: The password of implant integration. J. Dent. Implants 2012, 2, 103–109. [Google Scholar]
- Russ, M.; Chiu, W.K.; Fitzgerald, M. Surgical Implant for Supporting a Prosthetic Device. Australian Patent No. 2017902308, 16 June 2017. [Google Scholar]
- Nicholson, P.H.; Moilanen, P.; Kärkkäinen, T.; Timonen, J.; Cheng, S. Guided ultrasonic waves in long bones: Modelling, experiment and in vivo application. Physiol. Meas. 2002, 23, 755. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, P.; Nicholson, P.; Kärkkäinen, T.; Wang, Q.; Timonen, J.; Cheng, S. Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos. Int. 2003, 14, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Wade, R.; Richardson, J. Outcome in fracture healing: A review. Injury 2001, 32, 109–114. [Google Scholar] [CrossRef]
- Chen, G.; Wu, F.; Zhang, J.; Zhong, G.; Liu, F. Sensitivities of biomechanical assessment methods for fracture healing of long bones. Med. Eng. Phys. 2015, 37, 650–656. [Google Scholar] [CrossRef]
- Wade, R.; Moorcroft, C.; Thomas, P. Fracture stiffness as a guide to the management of tibial fractures. Bone Jt. J. 2001, 83, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Claes, L.; Cunningham, J. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 2009, 467, 1964–1971. [Google Scholar] [CrossRef]
- Richardson, J.; Cunningham, J.; Goodship, A.; O’connor, B.; Kenwright, J. Measuring stiffness can define healing of tibial fractures. Bone Jt. J. 1994, 76, 389–394. [Google Scholar] [CrossRef]
- Eriksson, C.; Ohlson, K.; Richter, K.; Billerdahl, N.; Johansson, M.; Nygren, H. Callus formation and remodeling at titanium implants. J. Biomed. Mater. Res. Part A 2007, 83, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D.J.; Mather, P.T.; White, S.R. Viscoelastic properties of an epoxy resin during cure. J. Compos. Mater. 2001, 35, 883–904. [Google Scholar] [CrossRef]
- Cornelissen, P.; Cornelissen, M.; Van der Perre, G.; Christensen, A.; Ammitzbøll, F.; Dyrbye, C. Assessment of tibial stiffness by vibration testing in situ—II. Influence of soft tissues, joints and fibula. J. Biomech. 1986, 19, 551–561. [Google Scholar] [CrossRef]
- Saha, S.; Lakes, R.S. The effect of soft tissue on wave-propagation and vibration tests for determining the in vivo properties of bone. J. Biomech. 1977, 10, 393–401. [Google Scholar] [CrossRef]
- Tsuchikane, A.; Nakatsuchi, Y.; Nomura, A. The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method. Proc. Inst. Mech. Eng. Part H 1995, 209, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Bediz, B.; Özgüven, H.N.; Korkusuz, F. Vibration measurements predict the mechanical properties of human tibia. Clin. Biomech. 2010, 25, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, J.M.; Nigg, B.M. Modification of soft tissue vibrations in the leg by muscular activity. J. Appl. Physiol. 2001, 90, 412–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, J.; Lowe, M. Leaky quasi modes in curved plates. AIP Conf. Proc. 2005, 760, 180–187. [Google Scholar]
- Pavlakovic, B.; Lowe, M.J.S.; Alleyne, D.; Cawley, P. Disperse: A general purpose program for creating dispersion curves. In Review of Progress in Quantitative Nondestructive Evaluation; Thompson, D., Chimenti, D., Eds.; Springer: New York, NY, USA, 1997; pp. 185–192. [Google Scholar]
- Viktorov, I.A. Rayleigh and Lamb Waves: Physical Theory and Applications; Plenum Press: New York, NY, USA, 1967. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sohn, H. Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 365, 539–560. [Google Scholar] [CrossRef]
- Lee, B.; Manson, G.; Staszewski, W. Environmental Effects on Lamb Wave Responses from Piezoceramic Sensors; Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2003; pp. 195–202. [Google Scholar]
- Ha, S.; Lonkar, K.; Mittal, A.; Chang, F.-K. Adhesive layer effects on pzt-induced lamb waves at elevated temperatures. Struct. Health Monit. 2010, 9, 247–256. [Google Scholar] [CrossRef]
- Croxford, A.J.; Moll, J.; Wilcox, P.D.; Michaels, J.E. Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 2010, 50, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, P.; Croxford, A.; Michaels, J.; Lu, Y.; Drinkwater, B. A comparison of temperature compensation methods for guided wave structural health monitoring. AIP Conf. Proc. 2008, 975, 1453–1460. [Google Scholar]
Cross-section | Aluminium Surrogates (Implant and Bone) Mass (grams) | Plasticine Mass (Grams) |
---|---|---|
Oval | 523.5 | 317.9 |
Triangular | 504.1 | 299.0 |
Wave | Frequenc (0 min) | Time (0 min) | Frequency (1000 min) | Time (1000 min) | Change in Power/Frequency (dB/Hz) (relative to 0 min) |
---|---|---|---|---|---|
A | 99.2 kHz | 9 µs | 137.3 kHz | 7.6 µs | 7.8 dB/Hz |
B | 465.4 kHz | 6.4 µs | 465.4 kHz | 6.5 µs | 0.1 dB/Hz |
C | 167.8 kHz | 21.1 µs | 145.0 kHz | 23.7 µs | 27.2 dB/Hz |
D | 434.9 kHz | 22.1 µs | 404.4 kHz | 25.7 µs | 6.7 dB/Hz |
Wave | Frequency (0 min) | Time (0 min) | Frequency (1000 min) | Time (1000 min) | Change in Power/Frequency (dB/Hz) (relative to 0 min) |
---|---|---|---|---|---|
a | 76.3 kHz | 18.6 µs | 152.6 kHz | 16.6 µs | 18.6 dB/Hz |
b | 419.6 kHz | 19.3 µs | 381.5 kHz | 19.7 µs | 9.8 dB/Hz |
c | 198.4 kHz | 32.3 µs | 183.1 kHz | 33.2 µs | 27.6 dB/Hz |
d | 434.9 kHz | 36.4 µs | 412.0 kHz | 40.2 µs | 22.5 dB/Hz |
Label | Frequency (0 min) | Time (0 min) | Frequency (1000 min) | Time (1000 min) | Change in Power/Frequency (dB/Hz) (relative to 0 min) |
---|---|---|---|---|---|
d | 389.1 kHz | 36 µs | 381.5 kHz | 38.1 µs | −6.1 dB/Hz |
Label | Frequency (0 min) | Time (0 min) | Frequency (1000 min) | Time (1000 min) | Change in Power/Frequency (dB/Hz) (relative to 0 min) |
---|---|---|---|---|---|
a | 244.1 kHz | 21.2 µs | 251.8 kHz | 18.0 µs | 29.5 dB/Hz |
b | 419.6 kHz | 23.4 µs | 381.5 kHz | 15.7 µs | 26.9 dB/Hz |
c | 198.4 kHz | 28.8 µs | 160.20 kHz | 28.7 µs | 22.2 dB/Hz |
d | 373.8 kHz | 36.3 µs | 343.3 kHz | 37.1 µs | 18.0 dB/Hz |
e | 244.1 kHz | 47.2 µs | 228.9 kHz | 44.5 µs | 24.0 dB/Hz |
f | 427.2 kHz | 47.8 µs | 419.6 kHz | 47.6 µs | 11.1 dB/Hz |
z | 1030.0 kHz | 21.5 µs | 1030.0 MHz | 21.6 µs | 22.4 dB/Hz |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vien, B.S.; Chiu, W.K.; Russ, M.; Fitzgerald, M. A Quantitative Approach for the Bone-implant Osseointegration Assessment Based on Ultrasonic Elastic Guided Waves. Sensors 2019, 19, 454. https://doi.org/10.3390/s19030454
Vien BS, Chiu WK, Russ M, Fitzgerald M. A Quantitative Approach for the Bone-implant Osseointegration Assessment Based on Ultrasonic Elastic Guided Waves. Sensors. 2019; 19(3):454. https://doi.org/10.3390/s19030454
Chicago/Turabian StyleVien, Benjamin Steven, Wing Kong Chiu, Matthias Russ, and Mark Fitzgerald. 2019. "A Quantitative Approach for the Bone-implant Osseointegration Assessment Based on Ultrasonic Elastic Guided Waves" Sensors 19, no. 3: 454. https://doi.org/10.3390/s19030454
APA StyleVien, B. S., Chiu, W. K., Russ, M., & Fitzgerald, M. (2019). A Quantitative Approach for the Bone-implant Osseointegration Assessment Based on Ultrasonic Elastic Guided Waves. Sensors, 19(3), 454. https://doi.org/10.3390/s19030454