Multiclass Radio Frequency Interference Detection and Suppression for SAR Based on the Single Shot MultiBox Detector
Abstract
:1. Introduction
2. Signal Model
3. Interference Detection and Suppression Method
3.1. Dataset Preparation
3.1.1. Simulation of the Time-Domain Dataset
3.1.2. Short-time Fourier Transform
3.1.3. Feature Boxes
3.2. Detection, Recognition, and Parameter Estimation for the Interference
3.2.1. Training Process
- Extracting the primary feature maps from the data through feature extraction layers:The convolutional neural network VGG16 is used as the feature extraction layer in this paper. It can map raw data to high-dimensional space. According to the time and frequency characteristics of the SAR echo signal, this paper makes slight adjustments to the traditional VGG16 network (for example, the kernel size and the kernel initialization) to enhance its ability to extract the features of the SAR echo signal. The details of the network structure are shown in Table 1. After multiple convolution and maxpool operations with this network, primary feature maps that reflect the time–frequency characteristics of the echo are obtained. The subsequent classification and regression steps are performed on these primary feature maps.
- Extracting advanced feature maps from the primary feature maps through multiscale feature mapping layers:The primary feature maps obtained in the previous step are passed through the multiscale feature mapping layers, where each layer uses convolution or pooling to obtain advanced feature maps on multiple scales.
- Determining feature information through the classification and regression layers:The predicted category, the confidence values, and the offsets relative to the system’s default bounding boxes are given for each position of the advanced feature maps. Then, all of these intermediate results are merged using non-maximum suppression. In the end, the final result is delivered to the loss function. As the number of training iterations increases, the value of the loss function decreases. When it reaches a certain value and its change rate is small enough, the network training is considered to be complete. At this time, the network is capable of interference type classification and feature box prediction.
3.2.2. Testing Process
- Using the network for predictions:The time–frequency graph of an unknown signal is obtained by STFT, and it acts as the input to the above SSD network. The network gives the prediction result. The prediction result contains: (1) whether the signal is contaminated; and (2) if contaminated, the interference type and the position of the interference in the time–frequency graph.
- Estimating interference signal parameters by using the prediction result:We can get the predicted feature boxes of the unknown signal with the trained SSD network, and then the signal parameters of the interference can be estimated. The time shifts and pulse widths can be obtained by using the time span of the feature box on the time axis. We can get the frequency and bandwidth of the interference signals by conducting the same operation on the frequency axis. Finally, the predicted interference signal is obtained by Equation (5).
3.3. Interference Suppression Method Based on the Adaptive Filter
4. Simulation Experiments
4.1. Dataset Generation and Network Training
4.2. Simulation Results
4.2.1. Results of the Single Pulse Echo Signal
4.2.2. Results of the Distributed Target Echo Signal
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tao, M.; Zhou, F.; Zhang, Z. Wideband interference mitigation in high-resolution airborne synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2015, 54, 74–87. [Google Scholar] [CrossRef]
- Yang, Z.; Du, W.; Liu, Z.; Liao, G. WBI suppression for SAR using iterative adaptive method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1008–1014. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, F.; Liu, J.; Liu, Y.; Zhang, Z.; Bao, Z. Narrow-band interference mitigation for SAR using independent subspace analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5289–5301. [Google Scholar]
- Zhou, F.; Tao, M. Research on methods for narrow-band interference suppression in synthetic aperture radar data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3476–3485. [Google Scholar] [CrossRef]
- Zhou, F.; Tao, M.; Bai, X.; Liu, J. Narrow-band interference suppression for SAR based on independent component analysis. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4952–4960. [Google Scholar] [CrossRef]
- Meyer, F.J.; Nicoll, J.; Doulgeris, A.P. Characterization and extent of randomly-changing radio frequency interference in ALOS PALSAR data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2448–2451. [Google Scholar]
- Natsuaki, R.; Motohka, T.; Watanabe, M.; Shimada, M.; Suzuki, S. An autocorrelation-based radio frequency interference detection and removal method in azimuth-frequency domain for SAR image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5736–5751. [Google Scholar] [CrossRef]
- Meyer, F.J.; Nicoll, J.B.; Doulgeris, A.P. Correction and characterization of radio frequency interference signatures in L-band synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4961–4972. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Xing, M.; Bai, X.; Sun, G.; Bao, Z. Narrow-band interference suppression for SAR based on complex empirical mode decomposition. IEEE Geosci. Remote Sens. Lett. 2009, 6, 423–427. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, X.Y.; Zhou, Z.M. Side-lobe reduction for radio frequency interference suppression via clipping of strong scatterers. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1178–1182. [Google Scholar] [CrossRef]
- Feng, J.; Zheng, H.; Deng, Y.; Gao, D. Application of subband spectral cancellation for SAR narrow-band interference suppression. IEEE Geosci. Remote Sens. Lett. 2012, 9, 190–193. [Google Scholar] [CrossRef]
- Yi, J.; Wan, X.; Cheng, F.; Gong, Z. Computationally efficient RF interference suppression method with closed-form maximum likelihood estimator for HF surface wave over-the-horizon radars. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2361–2372. [Google Scholar] [CrossRef]
- Elgamel, S.A.; Soraghan, J.J. Using EMD-FrFT filtering to mitigate very high power interference in chirp tracking radars. IEEE Signal Process. Lett. 2011, 18, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Int. Conf. Neural Inf. Process. Syst. 2012, 1, 1097–1105. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. ArXiv, 2014; arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 11–14 October 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–10, 15–16 October 2016; pp. 21–37. [Google Scholar]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, Y.; Sun, H.; Yang, X.; Gao, X.; Hong, W.; Fu, K.; Sun, X. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection. IEEE Access 2018, 6, 20881–20892. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.; Yin, Q.; Li, W.; Li, H.C.; Hong, W. Multi-aspect-aware bidirectional LSTM networks for synthetic aperture radar target recognition. IEEE Access 2017, 5, 26880–26891. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.Q. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Guo, R.; Zhang, L.; Bao, Z. Interference suppression algorithm for SAR based on time–frequency transform. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3765–3779. [Google Scholar] [CrossRef]
- Li, H.; Hong, W.; Wu, Y.; Fan, P. An efficient and flexible statistical model based on generalized gamma distribution for amplitude SAR images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2711–2722. [Google Scholar]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Peng, R.; Wang, C. A two-component K–lognormal mixture model and its parameter estimation method. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2640–2651. [Google Scholar] [CrossRef]
- Vu, V.T.; Sjogren, T.K.; Pettersson, M.I.; Hakansson, L.; Gustavsson, A.; Ulander, L.M.H. RFI suppression in ultrawideband SAR using an adaptive line enhancer. IEEE Geosci. Remote Sens. Lett. 2010, 7, 694–698. [Google Scholar] [CrossRef]
Layer | Kernel Size | Stride | Padding | Kernel Initialization | Activation |
---|---|---|---|---|---|
Conv2D | 3 × 3 | Same | he_normal | Relu | |
Conv2D | Same | he_normal | Relu | ||
Maxpool | Same | None | None | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Maxpool | Same | None | None | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Maxpool | Same | None | None | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Maxpool | Same | None | None | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Conv2D | Same | he_normal | Relu | ||
Maxpool | Same | None | None |
Parameter | Value |
---|---|
Bandwidth (MHz) | 50 |
Sampling Frequency (MHz) | 100 |
Pulse Width (s) | 2.5 × 10 |
Chirp Rate (Hz/s) | 20 × 10 |
Receive Window Width (s) | 10 × 10 |
Signal-to-noise Ratio (dB) | −5 |
Amplitude Range (dB) 1 | 0–20 |
Type of Interference | Parameters | Value |
---|---|---|
RFNI | Range of Frequency (MHz) | 0–50 (Uniform Distribution) |
Range of Pulse Width (s) | 1.25–1.66 (Uniform Distribution) | |
Amplitude Range (dB) 1 | 30–40 (Rayleigh Distribution) | |
NBLFMI | Range of Bandwidth (MHz) | 0.01–0.5 (Uniform Distribution) |
Range of Pulse Width (s) | 1.25–1.66 (Uniform Distribution) | |
Amplitude Range (dB) 1 | 30–40 (Uniform Distribution) | |
WBLFMI | Range of Bandwidth (MHz) | 5–10 (Uniform Distribution) |
Range of Pulse Width (s) | 1.25–1.66 (Uniform Distribution) | |
Amplitude Range (dB) 1 | 30–40 (Uniform Distribution) |
Type of Interference | Estimated Parameters | Value |
---|---|---|
RFNI-1 | Frequency (MHz) 1 | 15.623 |
Pulse Width (s) | 1.386 × 10 | |
Time Shift (s) | 4.334 × 10 | |
RFNI-2 | Frequency (MHz) 1 | 33.129 |
Pulse Width (s) | 1.647 × 10 | |
Time Shift (s) | 2.727 × 10 | |
NBLFMI | Chirp Rate (Hz/s) | 2.806 × 10 |
Pulse Width (s) | 1.587 × 10 | |
Time Shift (s) | 3.851 × 10 | |
WBLFMI | Chirp Rate (Hz/s) | 9.445 × 10 |
Pulse Width (s) | 1.2955 × 10 | |
Time Shift (s) | 7.068 × 10 |
Interference-Free Signal | Contaminated Signal | Time–Frequency Filtering Method | Proposed Method | |
---|---|---|---|---|
SINR (dB)1 | −5.297 | −25.017 | −16.399 | −15.573 |
PSLR (dB)2 | −10.813 | None | −7.478 | −10.085 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Li, J.; Sun, B.; Chen, J.; Li, C. Multiclass Radio Frequency Interference Detection and Suppression for SAR Based on the Single Shot MultiBox Detector. Sensors 2018, 18, 4034. https://doi.org/10.3390/s18114034
Yu J, Li J, Sun B, Chen J, Li C. Multiclass Radio Frequency Interference Detection and Suppression for SAR Based on the Single Shot MultiBox Detector. Sensors. 2018; 18(11):4034. https://doi.org/10.3390/s18114034
Chicago/Turabian StyleYu, Junfei, Jingwen Li, Bing Sun, Jie Chen, and Chunsheng Li. 2018. "Multiclass Radio Frequency Interference Detection and Suppression for SAR Based on the Single Shot MultiBox Detector" Sensors 18, no. 11: 4034. https://doi.org/10.3390/s18114034
APA StyleYu, J., Li, J., Sun, B., Chen, J., & Li, C. (2018). Multiclass Radio Frequency Interference Detection and Suppression for SAR Based on the Single Shot MultiBox Detector. Sensors, 18(11), 4034. https://doi.org/10.3390/s18114034