Modeling Network-Controlled Device-to-Device Communications in SimuLTE
Abstract
:1. Introduction
- The documentation of an efficient modeling of D2D communications for the widely used SimuLTE system-level simulator that allows researchers to validate the modeling and to extend the tool for their own research purposes;
- A discussion of the performance of the tool, in terms of complexity and profiling of execution time;
- Exemplary results showing the type of scenarios that can be run involving D2D communications, and the type of insight that can be gained by system-level simulation; and
- An assessment of the effects of parameter selection on the observable performance (namely, interference radius vs. frequency reuse, transmission horizon vs. reception probability and execution speed in multihop D2D communications).
2. Background on LTE-Advanced
Network-Controlled Device-to-Device Communications
3. Related Work
4. Overview of the SimuLTE Architecture
4.1. General Architecture and Modeling of Protocol Layers
4.2. Modeling Message Transmission and Interference
4.3. Resource Allocation at the eNB
5. Modeling Device-to-Device Communications in SimuLTE
5.1. Modifying Protocol Layers to Accommodate D2D Data Processing
- -
- At the MAC layer of the transmitter, how to manage busy H-ARQ processes, e.g., those waiting for an acknowledgement or a grant for retransmitting a MAC PDU. One choice may be to interrupt them, hence dropping MAC PDUs awaiting retransmission. Alternatively, one could allow H-ARQ processes to terminate their cycle along the “old” path before switching to the “new” one.
- -
- At the RLC layer, whether to flush the RLC buffer (which contains data ciphered with the wrong session key, see [18]) and switch mode instantly, or to defer switching until the RLC buffer has been drained by the MAC.
- -
- At the PDCP layer, whether to buffer SDUs in anticipation of a possible future MS operation, and whether to relay them to the PDCP entity that manages the new direction upon MS (see again [18]).
5.2. Modeling Resource Allocation
- (1)
- Inter-P2P: two P2P flows (i,j) and (k,l) are conflicting if
- (2)
- Inter-P2MP: two P2MP transmitters and are conflicting if
- (3)
- P2P with P2MP (and vice versa): flow (i,j) and transmitter are conflicting if
5.3. Modeling Air Transmissions of D2D MAC PDUs
6. Performance Evaluation
6.1. Profiling
6.2. Evaluation of D2D-Enabled Simulation Scenarios
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Dighriri, M.; Alfoudi, A.S.; Lee, G.M.; Baker, T. Data Traffic Model in Machine to Machine Communications over 5G Network Slicing. In Proceedings of the 2016 9th International Conference on Developments in eSystems Engineering (DeSE), Liverpool, UK, 31 August–2 September 2017; pp. 239–244. [Google Scholar]
- Virdis, A.; Vallati, C.; Nardini, G.; Tanganelli, G.; Stea, G.; Mingozzi, E. D2D Communications for Large-Scale Fog Platforms: Enabling Direct M2M Interactions. IEEE Veh. Technol. Mag. 2018, 13, 24–33. [Google Scholar] [CrossRef]
- Bello, O.; Zeadally, S. Intelligent Device-to-Device Communication in the Internet of Things. IEEE Syst. J. 2016, 10, 1172–1182. [Google Scholar] [CrossRef]
- Nardini, G.; Virdis, A.; Campolo, C.; Molinaro, A.; Stea, G. Cellular-V2X Communications for Platooning: Design and Evaluation. Sensors 2018, 18, 1527. [Google Scholar] [CrossRef] [PubMed]
- Campolo, C.; Molinaro, A.; Araniti, G.; Berthet, A.O. Better Platooning Control toward Autonomous Driving: An LTE Device-to-Device Communications Strategy That Meets Ultralow Latency Requirements. IEEE Veh. Technol. Mag. 2017, 12, 30–38. [Google Scholar] [CrossRef]
- Nardini, G.; Stea, G.; Virdis, A. A fast and reliable broadcast service for LTE-Advanced exploiting multihop device-to-device transmissions. Future Int. 2017, 9, 89. [Google Scholar] [CrossRef]
- Lin, X.; Andrews, J.; Ghosh, A.; Ratasuk, R. An overview of 3GPP device-to-device proximity services. IEEE Commun. Mag. 2014, 52, 40–48. [Google Scholar] [CrossRef]
- Phunchongharn, P.; Hossain, E.; Kim, D.I. Resource allocation for device-to-device communications underlaying LTE-advanced networks. IEEE Wirel. Commun 2013, 20, 91–100. [Google Scholar] [CrossRef]
- Huang, L.; Su, Z.; Gao, Z.; Lin, Z.; Hu, T.; Liwang, M. OOP-based Device-to-Device Communication simulator design of LTE network. In Proceedings of the 2014 9th International Conference on Computer Science & Education, Vancouver, BC, Canada, 22–24 August 2014; pp. 294–297. [Google Scholar] [CrossRef]
- Virdis, A.; Stea, G.; Nardini, G. Simulating LTE/LTE-Advanced Networks with SimuLTE. In Simulation and Modeling Methodologies, Technologies and Applications; Obaidat, M.S., Kacprzyk, J., Ören, T., Filipe, J., Eds.; Series Advances in Intelligent Systems and Computing; Springer: Berlin, Germany, 2016; Volume 402, pp. 83–105. ISBN 978-3-319-26469-1. [Google Scholar]
- SimuLTE Website. Available online: http://simulte.com/ (accessed on 18 October 2018).
- OMNeT++ Website. Available online: https://omnetpp.org (accessed on 18 October 2018).
- INET Library Webiste. Available online: https://inet.omnetpp.org (accessed on 18 October 2018).
- Baldo, N.; Miozzo, M.; Requena, M.; Guerrero, J.N. An Open Source Product-Oriented LTE Network Simulator based on ns-3. In Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM 2011), Miami Beach, FL, USA, 31 October–4 November 2011. [Google Scholar]
- Piro, G.; Grieco, L.A.; Boggia, G.; Capozzi, F.; Camarda, P. Simulating LTE Cellular Systems: An Open Source Framework. IEEE Trans. Veh. Technol. 2011, 60, 498–513. [Google Scholar] [CrossRef]
- Rouil, R.; Cintrón, F.J.; Mosbah, A.B.; Gamboa, S. Implementation and Validation of an LTE D2D Model for ns-3. In Proceedings of the Workshop on ns-3 (WNS3 ‘17), Porto, Portugal, 13–14 June 2017; ACM: New York, NY, USA, 2017; pp. 55–62. [Google Scholar]
- 3GPP—TS 36.843 v12.0.1, Study on LTE Device-to-device Proximity Services: Radio aspects (Release 12), March 2014. Available online: http://www.3gpp.org/dynareport/36-series.htm (accessed on 18 October 2018).
- Nardini, G.; Stea, G.; Virdis, A. A scalable data-plane architecture for one-to-one device-to-device communications in LTE-Advanced. Comput. Netw. 2018, 131, 77–95. [Google Scholar] [CrossRef]
- Ding, G.; Wang, J.; Wu, Q.; Yao, Y.; Song, F.; Tsiftsis, T.A. Cellular-Base-Station-Assisted Device-to-Device Communications in TV White Space. IEEE J. Sel. Areas Commun. 2016, 34, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Yu, G.; Qu, F.; Zhang, Z. Device-to-Device Communications in Unlicensed Spectrum: Mode Selection and Resource Allocation. IEEE Access 2016, 4, 4720–4729. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, Y.; Song, L. D2D-U: Device-to-Device Communications in Unlicensed Bands for 5G System. IEEE Trans. Wirel. Commun. 2017, 16, 3507–3519. [Google Scholar] [CrossRef]
- Rupp, M.; Schwarz, S.; Taranetz, M. The Vienna LTE-Advanced Simulators; Springer: Singapore, 2016; ISBN 978-981-10-0616-6. [Google Scholar]
- Carreras, A.; Delgado-Luque, I.M.; Martín-Vega, F.J.; Gómez, G.; Aguayo-Torres, M.C.; Entrambasaguas, J.T. A System-Level Simulator for the Downlink of LTE-A: Case of Study—Cell-Offloading in HetNets. Wirel. Pers. Commun. 2018, 100, 177. [Google Scholar] [CrossRef]
- Cecchini, G.; Bazzi, A.; Masini, B.M.; Zanella, A. LTEV2Vsim: An LTE-V2V simulator for the investigation of resource allocation for cooperative awareness. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 80–85. [Google Scholar] [CrossRef]
- Simsek, M.; Merwaday, A.; Correal, N.; Güvenç, I. Device-to-device discovery based on 3GPP system level simulations. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 555–560. [Google Scholar] [CrossRef]
- Choi, B.G.; Kim, J.S.; Chung, M.Y.; Shin, J.; Park, A.S. Development of a System-Level Simulator for Evaluating Performance of Device-to-Device Communication Underlaying LTE-Advanced Networks. In Proceedings of the 2012 Fourth International Conference on Computational Intelligence, Modelling and Simulation, Kuantan, Malaysia, 25–27 September 2012; pp. 330–335. [Google Scholar] [CrossRef]
- Nardini, G.; Stea, G.; Virdis, A.; Sabella, D.; Caretti, M. Practical large-scale coordinated scheduling in LTE-Advanced networks. Wirel. Netw. 2016, 22, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Nardini, G.; Stea, G.; Virdis, A.; Sabella, D.; Caretti, M. Resource allocation for network-controlled device-to-device communications in LTE-Advanced. Wirel. Netw. 2017, 23, 787–804. [Google Scholar] [CrossRef]
- Virdis, A.; Stea, G.; Nardini, G. SimuLTE: A Modular System-level Simulator for LTE/LTE-A Networks based on OMNeT++. In Proceedings of the SimulTech 2014, Vienna, Austria, 28–30 August 2014. [Google Scholar]
- Nardini, G.; Virdis, A.; Stea, G. Modeling X2 backhauling for LTE-Advanced and assessing its effect on CoMP Coordinated Scheduling. In Proceedings of the IWSLS2 2016, Vienna, Austria, 1 July 2016. [Google Scholar]
- Nardini, G.; Virdis, A.; Stea, G. Simulating Cellular Communications in Vehicular Networks: Making SimuLTE Interoperable with Veins. In Proceedings of the 4th OMNeT++ Community Summit, Bremen, Germany, 7–8 September 2017. [Google Scholar]
- Virdis, A.; Nardini, G.; Stea, G. Modeling unicast device-to-device communications with SimuLTE. In Proceedings of the IWSLS2 2016, Vienna, Austria, 1 July 2016. [Google Scholar]
- Nardini, G.; Virdis, A.; Stea, G. Simulating device-to-device communications in OMNeT++ with SimuLTE: Scenarios and configurations. In Proceedings of the OMNeT++ Community Summit, Brno, Czech Republic, 15–16 September 2016. [Google Scholar]
- Sommer, C.; German, R.; Dressler, F. Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Trans. Mob. Comput. 2011, 10, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Virdis, A.; Nardini, G.; Stea, G. Simulation of Cellular Networks using SimuLTE. In Recent Advances in Network Simulation: The OMNeT++ Environment and Its Ecosystem; Book Series: EAI/Springer Innovations in Communication and Computing; Springer: Berlin, Germany, 2018. [Google Scholar]
- Klugel, M.; Kellerer, W. Leveraging the D2D-Gain: Resource Efficiency Based Mode Selection for Device-to-Device Communication. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Gupta, S.K.; Khan, J.Y.; Ngo, D.T. Cluster-based D2D architecture for safety services in vehicular ad hoc networks. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; pp. 43–48. [Google Scholar] [CrossRef]
- Garau, M.; Anedda, M.; Desogus, C.; Ghiani, E.; Murroni, M.; Celli, G. A 5G cellular technology for distributed monitoring and control in smart grid. In Proceedings of the 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Cagliari, Italy, 7–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Varga, A. A. A practical introduction to the OMNeT++ simulation framework. In Recent Advances in Network Simulation: The OMNeT++ Environment and Its Ecosystem; Book Series: EAI/Springer Innovations in Communication and Computing; Springer: Berlin, Germany, 2018. [Google Scholar]
- Mehlfhrer, C.; Wrulich, M.; Ikuno, J.C.; Bosanska, D.; Rupp, M. Simulating the long term evolution physical layer. In Proceedings of the 17th EUSIPCO, Glasgow, UK, 25–28 August 2009; pp. 1471–1478. [Google Scholar]
- Zhang, R.; Cheng, X.; Yang, L.; Jiao, B. Interference-aware graph based resource sharing for device-to-device communications underlaying cellular networks. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013. [Google Scholar]
- Kim, J.; Caire, G.; Molisch, A.F. Quality-Aware Streaming and Scheduling for Device-to-Device Video Delivery. IEEE/ACM Trans. Netw. 2016, 24, 2319–2331. [Google Scholar] [CrossRef]
- Shi, Y.; Hou, Y.T.; Liu, J.; Kompella, S. Bridging the Gap between Protocol and Physical Models for Wireless Networks. IEEE Trans. Mob. Comput. 2013, 12, 1404–1416. [Google Scholar] [CrossRef]
- Xiao, X.; Tao, X.; Lu, J. A QoS-Aware Power Optimization Scheme in OFDMA Systems with Integrated Device-to-Device (D2D) Communications. In Proceedings of the VTC Fall 2011, San Francisco, CA, USA, 5–8 September 2011. [Google Scholar]
- Wen, S.; Zhu, X.; Zhang, X.; Yang, D. QoS-aware mode selection and resource allocation scheme for Device-to-Device (D2D) communication in cellular networks. In Proceedings of the ICC 2013, Budapest, Hungary, 9–13 June 2013. [Google Scholar]
Reference | Focus | D2D Capabilities |
---|---|---|
[22] | Link level | No |
[8] | Link level | Yes |
[23] | Link level | No |
[24] | Link level | Cooperation service among vehicles only |
[25] | Link level | D2D Discovery only |
[26] | Link level | Yes |
[15] | System level | No |
[14] | System level | No |
[16] | System level | Network-unassisted D2D |
Name | Min | Max |
---|---|---|
#UE pairs | 10 | 50 |
System packet rate | 100 Pkt/s | 500 Pkt/s |
Base Value | 431.45825 | |
95% Conf. Int. | ±3.41 | |
Relative | Absolute | |
#UE-pairs | 97.98% | 255.18 |
System packet rate | 2.01% | 36.58 |
#UE-pairs x System packet rate | 0.005% | −1.77 |
Unexplained | 0.001% | - |
Parameter | Scenario 1 Selection of the Interference Radius | Scenario 2 Analysis of D2D Mode-Switching Policies | Scenario 3 Selection of the P2MP Transmission Horizon |
---|---|---|---|
D2D comm. type | P2P | P2P | P2MP |
Number of UEs | 2+[8,16,24,32] interferers | 2 | 500 |
Traffic pattern | Constant Bit Rate (UDP-based) | Constant Bit Rate (UDP-based); 1 GB-file transfer (TCP-based) | Constant Bit Rate (UDP-based) |
UEs’ mobility | Static | Linear (10 m/s) | Static |
UEs’ TX power | 15 dBm | 15 dBm | 15 dBm |
Simulation time | 30 s | 30 s | 100 s |
Take-home lesson | Interference correctly accounted for, despite binary interference model | Application layer performance is affected by ineffective mode-switching policies | Reducing the transmission horizon abates simulation time |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardini, G.; Virdis, A.; Stea, G. Modeling Network-Controlled Device-to-Device Communications in SimuLTE. Sensors 2018, 18, 3551. https://doi.org/10.3390/s18103551
Nardini G, Virdis A, Stea G. Modeling Network-Controlled Device-to-Device Communications in SimuLTE. Sensors. 2018; 18(10):3551. https://doi.org/10.3390/s18103551
Chicago/Turabian StyleNardini, Giovanni, Antonio Virdis, and Giovanni Stea. 2018. "Modeling Network-Controlled Device-to-Device Communications in SimuLTE" Sensors 18, no. 10: 3551. https://doi.org/10.3390/s18103551
APA StyleNardini, G., Virdis, A., & Stea, G. (2018). Modeling Network-Controlled Device-to-Device Communications in SimuLTE. Sensors, 18(10), 3551. https://doi.org/10.3390/s18103551