A Disposable and Multi-Chamber Film-Based PCR Chip for Detection of Foodborne Pathogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Fabrication of Film-Based PCR Chip
2.3. Preparation of Bacillus cereus Based on Broth and Milk
2.4. Forward and Reverse Primers for Bacillus cereus
2.5. Optimization of Film PCR Chip
2.6. Bacillus cereus Gene Amplification Using the Film PCR Chip
3. Results
3.1. Fabrication of Film PCR Chip
3.2. Understanding of Temperature Profiling and Heat Stability of Film PCR Chip
3.3. Optimization of Film PCR Chip Type Using the Heat Transfer Simulation
3.4. Performance Evaluation of Film PCR Chip via Pathogen Gene Amplification
3.5. Detection of the Foodborne Pathogen in Real Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vashist, S.K. Point-of-Care Diagnostics: Recent Advances and Trends. Biosensors 2017, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Price, C.P. Point of care testing. BMJ Br. Med. J. 2001, 322, 1285–1288. [Google Scholar] [CrossRef]
- Mahato, K.; Srivastava, A.; Chandra, P. Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects. Biosens. Bioelectron. 2017, 96, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Syedmoradi, L.; Maryam, D.; Mehrdad, A.; Frank, A.G.; Hassan, H.; Kobra, O. Point of care testing: The impact of nanotechnology. Biosens. Bioelectron. 2017, 87, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Chang, W.; Wang, C.; Wang, J.; Mai, J.D.; Lee, G. Nucleic acid amplification using microfluidic systems. Lab Chip 2013, 13, 1225–1242. [Google Scholar] [CrossRef] [PubMed]
- Ishmael, F.T.; Stellato, C. Principles and applications of polymerase chain reaction: Basic science for the practicing physician. Ann. Allergy Asthma Immunol. 2008, 101, 437–443. [Google Scholar] [CrossRef]
- Ahrberg, C.D.; Manz, A.; Chung, B.G. Polymerase chain reaction in microfluidic devices. Lab Chip 2016, 16, 3866–3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.; Jeong, S.W.; Bae, N.H.; Song, S.; Lee, T.J.; Lee, M.-K.; Lee, S.J.; Lee, K.G. Droplet-based Digital PCR System for Detection of Single-cell Level of Foodborne Pathogens. BioChip J. 2017, 11, 329–337. [Google Scholar] [CrossRef]
- Bartsch, M.S.; Edwards, H.S.; Lee, D.; Moseley, C.E.; Tew, K.E.; Renzi, R.F.; Van de Vreugde, J.L.; Kim, H.; Knight, D.L.; Sinha, A.; et al. The rotary zone thermal cycler: A low-power system enabling automated rapid PCR. PLoS ONE 2015, 10, e0118182. [Google Scholar] [CrossRef] [PubMed]
- Coelho, B.; Veigas, B.; Fortunato, E.; Matrins, R.; Águas, H.; Igreja, R.; Baptista, P.V. Digital Microfluidics for nucleic acid amplification. Sensors 2017, 17, 1495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, J.; Ma, W.; Zheng, W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006, 24, 243–284. [Google Scholar] [CrossRef] [PubMed]
- Mark, D.; Haeberle, S.; Roth, G.; Stetten, F.V.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 305–376. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Byun, D.; Mauk, M.G.; Bau, H.H. A disposable, self-contained PCR chip. Lab Chip 2009, 9, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Kim, Y.T.; Lee, J.W.; Kim, D.H.; Seo, T.S. An integrated direct loop-mediated isothermal amplification microdevice incorporated with an immunochromatographic strip for bacteria detection in human whole blood and milk without a sample preparation step. Biosens. Bioelectron. 2016, 79, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Nahm, K.B.; Lim, J.B.; Oh, S.W.; Choi, E.Y. A rapid and sensitive detection of HPV by combined assay of PCR and fluorescence DNA chip. BioChip J. 2014, 8, 48–54. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, T.; Wu, H.; Yang, Y. Visual DNA microarray coupled with multiplex-PCR for the rapid detection of twelve genetically modified maize. BioChip J. 2016, 10, 42–47. [Google Scholar] [CrossRef]
- Helgason, E.; Økstad, O.A.; Caugant, D.A.; Johansen, H.A.; Fouet, A.; Mock, M.; Hegna, I.; Kolstø, A. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One species on the basis of genetic evidence. Appl. Environ. Microbiol. 2000, 66, 2627–2630. [Google Scholar] [CrossRef] [PubMed]
- Drobniewski, F.A. Bacillus cereus and related species. Clin. Microbiol. Rev. 1993, 6, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.W.; Schraft, H. Bacillus cereus food poisoning. In Foodborne Diseases, 3rd ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 395–405. [Google Scholar]
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Goepfeht, J.M.; Spira, W.M.; Kim, H.U. Bacillus cereus: Food poisoning organism—A review. J. Milk Food Technol. 1972, 35, 213–227. [Google Scholar] [CrossRef]
- Bewes, J.M.; Suchowerska, N.; McKenzie, D.R. Automated cell colony counting and analysis using the circular Hough image transform algorithm. Phys. Med. Biol. 2008, 53, 5991–6008. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Han, J.-K.; Park, J.-S.; Lee, J.-S.; Lee, S.-H.; Cho, J.-I.; Kim, K.-S. Various enterotoxin and other virulence factor genes widespread among Baciluus cereus and Bacillus thuringiensis strains. J. Microbiol. Biotechnol. 2015, 25, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Miralles, V.; Huerre, A.; Malloggi, F.; Jullien, M.-C. A review of heating and temperature control in microfluidic systems: Techniques and applications. Diagnostics 2013, 3, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.T.; Chen, Y.; Choi, J.Y.; Kim, W.-J.; Dae, H.-M.; Jung, J.; Seo, T.S. Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosens. Bioelectron. 2012, 33, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yang, C.; Huang, M. Simulation and experimental validation of micro polymerase chain reaction chips. Sens. Actuators B 2000, 71, 127–133. [Google Scholar] [CrossRef]
- Shaw, K.J.; Docker, P.T.; Yelland, J.V.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. Lab Chip 2010, 10, 1725–1728. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Guo, D.; Wen, S. Joule heating effects on two-phase flows in dielectrophoresis microchips. BioChip J. 2017, 11, 196–205. [Google Scholar] [CrossRef]
- Yi, P.; Awang, R.A.; Rowe, W.S.T.; Kalantar-zadeh, K.; Khoshmanesh, K. PDMS nanocomposites for heat transfer enhancement in microfluidic platforms. Lab Chip 2014, 14, 3419–3426. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, N.H.; Lim, S.Y.; Song, Y.; Jeong, S.W.; Shin, S.Y.; Kim, Y.T.; Lee, T.J.; Lee, K.G.; Lee, S.J.; Oh, Y.-J.; et al. A Disposable and Multi-Chamber Film-Based PCR Chip for Detection of Foodborne Pathogen. Sensors 2018, 18, 3158. https://doi.org/10.3390/s18093158
Bae NH, Lim SY, Song Y, Jeong SW, Shin SY, Kim YT, Lee TJ, Lee KG, Lee SJ, Oh Y-J, et al. A Disposable and Multi-Chamber Film-Based PCR Chip for Detection of Foodborne Pathogen. Sensors. 2018; 18(9):3158. https://doi.org/10.3390/s18093158
Chicago/Turabian StyleBae, Nam Ho, Sun Young Lim, Younseong Song, Soon Woo Jeong, Seol Yi Shin, Yong Tae Kim, Tae Jae Lee, Kyoung G. Lee, Seok Jae Lee, Yong-Jun Oh, and et al. 2018. "A Disposable and Multi-Chamber Film-Based PCR Chip for Detection of Foodborne Pathogen" Sensors 18, no. 9: 3158. https://doi.org/10.3390/s18093158
APA StyleBae, N. H., Lim, S. Y., Song, Y., Jeong, S. W., Shin, S. Y., Kim, Y. T., Lee, T. J., Lee, K. G., Lee, S. J., Oh, Y.-J., & Park, Y. M. (2018). A Disposable and Multi-Chamber Film-Based PCR Chip for Detection of Foodborne Pathogen. Sensors, 18(9), 3158. https://doi.org/10.3390/s18093158