Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking
Abstract
:1. Introduction
2. Problem Formulation
2.1. Communication Network
2.2. System Modeling
3. Nonlinear Interacting Multiple Adaptive Model
3.1. Interacting Multiple Adaptive Model
3.1.1. Current Statistical Model
3.1.2. Current Statistical Model
3.1.3. Adaptive Current Statistical Model
3.2. Nonlinear Interacting Multiple Adaptive Model
4. Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus
4.1. Average Consensus
4.2. Interacting Multiple Adaptive Model-Unscented Information Consensus Filter
Algorithm 1. IMAM-UICF for sensor at time instant . |
Input: state and error covariance , process noise covariance , hybrid probability , measurement ; Output: state and error covariance , process noise covariance , hybrid probability , combination state and error covariance ; |
Step 1. Interacting Step 2. Filtering (1) prediction (based on the UT) (2) update process noise covariance (3) define pseudo measurement matrix (4) update information matrix and information vector (5) perform consensus on and for do (a) send and to all neighbours (b) receive and from all neighbours (c) update consensus terms: end for (6) compute a posteriori state estimate and covariance Step 3. Update mode probability Step 4. Combination |
4.3. Distributed Architecture
5. Experimental Evaluation
5.1. Verification Experiment
5.2. Comparison Experiment
5.3. Experiment with Varying Numbers of Sensors n
5.4. Experiment of Varying Measurement Noise ri
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yepes, J.L.; Hwang, I.; Rotea, M. New algorithms for aircraft intent inference and trajectory prediction. J. Guid. Control Dyn. 2007, 30, 370–382. [Google Scholar] [CrossRef]
- Liu, Z.X.; Zhang, Q.Q.; Li, L.Q.; Xie, W.X. Tracking multiple maneuvering targets using a sequential multiple target Bayes filter with jump Markov system models. Neurocomputing 2016, 216, 183–191. [Google Scholar] [CrossRef]
- Liu, H.; Wu, W. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-radial cubature Kalman filter for maneuvering target tracking. Sensors 2017, 17, 1374. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bar-Shalom, Y. Performance Prediction of the Interacting Multiple Model Algorithm. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 755–771. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X. Interacting multiple model algorithm based on adaptive current statistical model. Syst. Eng. Electron. 2016, 38, 977–983. [Google Scholar]
- Vikranth, S.; Sudheesh, P.; Jayakumar, M. Nonlinear Tracking of Target Submarine Using Extended Kalman Filter (EKF). In International Symposium on Security in Computing and Communication; Springer: Singapore, 2016; Volume 625. [Google Scholar]
- Yousefi, S.; Chang, X.W.; Champagne, B. Mobile Localization in Non-Line-of-Sight Using Constrained Square-Root Unscented Kalman Filter. IEEE Trans. Veh. Technol. 2015, 64, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, R.; Petetin, Y.; Desbouvries, F.; Septier, F. Semi-independent resampling for particle filtering. IEEE Signal Process. Lett. 2018, 25, 130–134. [Google Scholar] [CrossRef]
- Peng, X.; Yang, K.; Liu, C. Maneuvering Target Tracking Using Current Statistical Model Based Adaptive UKF for Wireless Sensor Network. J. Commun. 2015, 10, 579–588. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, H.; Huang, H.; Zhao, X. A Cubature-Principle-Assisted IMM-Adaptive UKF Algorithm for Maneuvering Target Tracking Caused by Sensor Faults. Appl. Sci. 2018, 10, 1003. [Google Scholar] [CrossRef]
- Martino, L.; Read, J.; Elvira, V.; Louzada, F. Cooperative Parallel Particle Filters for on-Line Model Selection and Applications to Urban Mobility. Digit. Signal Process. 2017, 60, 172–185. [Google Scholar] [CrossRef]
- Urteaga, I.; Bugallo, M.F.; Djuric, P.M. Sequential Monte Carlo methods under model uncertainty. In Proceedings of the IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 26–29 June 2016. [Google Scholar]
- Carvalho, C.M.; Johannes, M.S.; Lopes, H.F.; Polson, N.G. Particle Learning and Smoothing. Stat. Sci. 2010, 25, 88–106. [Google Scholar] [CrossRef]
- Lee, D.J. Unscented information filtering for distributed estimation and multiple sensor fusion. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008; pp. 1–15. [Google Scholar]
- Liu, Y.; Liu, J.; Li, G.; Qi, L.; Li, Y.; He, Y. Centralized multi-sensor square root cubature joint probabilistic data association. Sensors 2017, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, Y.; Cao, Y.; Xu, Y. An impedance-match design scheme for inductively active power filter in distribution networks. Int. J. Electr. Power Energy Syst. 2018, 99, 638–649. [Google Scholar] [CrossRef]
- Das, S.; Moura, J.M. Distributed Kalman Filtering With Dynamic Observations Consensus. IEEE Trans. Signal Process. 2015, 63, 4458–4473. [Google Scholar] [CrossRef]
- Yu, L.; You, H.; Haipeng, W. Squared-root Cubature Information Consensus Filter for non-linear Decentralized State Estimation in Sensor networks. IET Radar Sonar Navig. 2014, 8, 931–938. [Google Scholar] [CrossRef]
- Keshavarz-Mohammadiyan, A.; Khaloozadeh, H. Consensus-based distributed unscented target tracking in wireless sensor networks with state-dependent noise. Signal Process. 2018, 144, 283–295. [Google Scholar] [CrossRef]
- Katragadda, S.; Sanmiguel, J.C.; Cavallaro, A. Consensus protocols for distributed tracking in wireless camera networks. In Proceedings of the 2014 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Keshavarz-Mohammadiyan, A.; Khaloozadeh, H. Logarithm based Adaptive Particle Filter for Maneuvering Target Tracking in Wireless Sensor Networks with Multiplicative Noise. In Proceedings of the 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), Qazvin, Iran, 27–28 January 2016; pp. 1–5. [Google Scholar]
- Blair, W.D.; Ogle, T.L. Tracking Maneuvering Targets with Multiple Biased Sensors. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016. [Google Scholar]
- Yu, Y. Consensus-Based Distributed Mixture Kalman Filter for Maneuvering Target Tracking in Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2016, 10, 8669–8681. [Google Scholar] [CrossRef]
- Bar-shalom, Y. Multitarget-Multisensor Tracking: Principles and Techniques; YBS Publishing: Storrs, CT, USA, 1995. [Google Scholar]
- Chen, L.; Gong, X.; Shi, H.J. Maneuvering frequency adaptive algorithm of maneuvering target tracking. In Proceedings of the 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9–11 June 2013; pp. 445–458. [Google Scholar]
- Yoon, J. Study on Nonlinear Filter Using Unscented Transformation Update. J. Aerosp. Syst. Eng. 2016, 10, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Sibley, G.; Sukhatme, G.S.; Matthies, L. The Iterated Sigma Point Filter with Applications to Long Range Stereo. In Proceedings of the 2nd Robotics: Science and Systems Conference, Philadelphia, Pennsylvania, 16–19 August 2006. [Google Scholar]
- Kamal, A.; Farrell, J.; Roy-Chowdhury, A. Information weighted consensus filters and their application in distributed camera networks. IEEE Trans. Autom. Control 2013, 58, 3112–3125. [Google Scholar] [CrossRef]
- Liu, G.; Tian, G. Square-Root Sigma-Point Information Consensus Filters for Distributed Nonlinear Estimation. Sensors 2017, 17, 800. [Google Scholar] [CrossRef] [PubMed]
- Liggins, M.E.; Chong, C.Y.; Kadar, I.; Alford, M.G.; Vannicola, V.; Thomopoulos, S. Distributed fusion architectures and algorithms for target tracking. Proc. IEEE 1997, 85, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Bakr, M.A.; Lee, S. Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency. Sensors 2017, 11, 2472. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Nan, W.; Huayong, Z.; Lincheng, S. Distributed fusion estimation algorithm for multi-UAVs cooperative sensing. Control Decis. 2010, 25, 814–820. [Google Scholar]
Time (s) | 1–51 | 51–61 | 61–81 | 81-–85 | 85–87 | 87–91 | 91–96 | 96–110 |
---|---|---|---|---|---|---|---|---|
Model | CV | CT | CV | CT | CA | CA | CA | CT |
0 | 0 | 0 | 0 | −5 | ||||
0 | 0 | 20 | 15 | 10 |
Time(s) | 110–126 | 126–134 | 134–145 | 145–157 | 157–161 | 161–163 | 163–178 | 178–180 |
---|---|---|---|---|---|---|---|---|
Model | CV | CA | CA | CA | CA | CA | CA | CV |
0 | 5 | −8 | 10 | 0 | −10 | −5 | 0 | |
0 | −10 | 18 | −20 | 30 | −8 | 0 | 0 |
Algorithms | Position ARMSE (m) | Velocity ARMSE (m/s) | Time (s) |
---|---|---|---|
IMAM | 124.0424 | 65.6603 | 0.001400000 |
IMAM-DUIF | 103.8004 | 55.8458 | 0.001557773 |
IMM-UICF | 137.0088 | 51.4543 | 0.001606565 |
IMAM-UICF | 86.2178 | 50.7479 | 0.001806565 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Liu, Y.; Liu, J.; Yu, K.; You, Y.; Jing, P.; He, Y. Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking. Sensors 2018, 18, 2012. https://doi.org/10.3390/s18072012
Ding Z, Liu Y, Liu J, Yu K, You Y, Jing P, He Y. Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking. Sensors. 2018; 18(7):2012. https://doi.org/10.3390/s18072012
Chicago/Turabian StyleDing, Ziran, Yu Liu, Jun Liu, Kaimin Yu, Yuanyang You, Peiliang Jing, and You He. 2018. "Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking" Sensors 18, no. 7: 2012. https://doi.org/10.3390/s18072012
APA StyleDing, Z., Liu, Y., Liu, J., Yu, K., You, Y., Jing, P., & He, Y. (2018). Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking. Sensors, 18(7), 2012. https://doi.org/10.3390/s18072012