Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Au NPs
2.3. Preparation of Au-Pd Core-Shell NPs
2.4. Centrifugal Deposition of NPs Film
2.5. Hydrogen Sensing Experimental Setup
3. Results and Discussion
3.1. Characterization NPs
3.2. NPs Film Characterization
3.3. Hydrogen Response Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Dai, J.; Wang, G.; Huang, C.; Tang, J.; Hu, W.; Song, H.; Huang, P. Optical fiber hydrogen sensor based on evaporated Pt/WO3 film. Sens. Actuators B Chem. 2015, 206, 564–569. [Google Scholar] [CrossRef]
- Dai, J.; Yang, M.; Yu, X.; Cao, K.; Liao, J. Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material. Sens. Actuators B Chem. 2012, 174, 253–257. [Google Scholar] [CrossRef]
- Quan, M.; Tian, J.; Yao, Y. Ultra-high sensitivity Fabry–Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect. Opt. Lett. 2015, 40, 4891. [Google Scholar] [CrossRef] [PubMed]
- Wadell, C.; Langhammer, C. Drift-corrected nanoplasmonic hydrogen sensing by polarization. Nanoscale 2015, 7, 10963–10969. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Carpenter, M.A.; Xia, H.; Welch, D. All-optical hydrogen sensor based on a high alloy content palladium thin film. Sens. Actuators B Chem. 2006, 113, 532–538. [Google Scholar] [CrossRef]
- Perrotton, C.; Westerwaal, R.J.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P. A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Opt. Express 2013, 21, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Luna-moreno, D.; Monzón-Hernández, D.; Villatoro, J.; Badenes, G.; Monz, D. Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd–Au thin films. Sens. Actuators B Chem. 2007, 125, 66–71. [Google Scholar] [CrossRef]
- Monzón-Hernández, D.; Luna-moreno, D.; Martínez-Escobar, D. Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sens. Actuators B Chem. 2009, 136, 562–566. [Google Scholar] [CrossRef]
- Yi, L.; You-ping, C.; Han, S.; Gang, Z. Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film. Rev. Sci. Instrum. 2012, 83, 125003. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chen, Y.; Zhang, G.; Liu, Y.; Huang, P.; Zhao, H.; Yang, M.; Dai, J.; Li, Z. Optical fiber hydrogen sensor based on an annealing-stimulated Pd–Y thin film. Sens. Actuators B Chem. 2015, 216, 11–16. [Google Scholar] [CrossRef]
- Adams, B.D.; Chen, A. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289. [Google Scholar] [CrossRef]
- Yang, F.; Kung, S.C.; Cheng, M.; Hemminger, J.C.; Penner, R.M. Smaller is faster and more sensitive: The effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 2010, 4, 5233–5244. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Radha, B.; Chan, J.Y.; Saifullah, M.S.M.; Kulkarni, G.U.; Ho, G.W. Flexible Palladium-Based H2 Sensor with Fast Response and Low Leakage Detection by Nanoimprint Lithography. ACS Appl. Mater. Interfaces 2013, 5, 7274–7281. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, H.H.H.; Xia, M. Single-walled carbon nanotubes modified with Pd nanoparticles: Unique building blocks for high-performance, flexible hydrogen sensors. J. Phys. Chem. C 2008, 112, 1250–1259. [Google Scholar] [CrossRef]
- Sirbuly, D.J.; Létant, S.E.; Ratto, T.V. Hydrogen Sensing with Subwavelength Optical Waveguides via Porous Silsesquioxane-Palladium Nanocomposites. Adv. Mater. 2008, 20, 4724–4727. [Google Scholar] [CrossRef]
- Monzón-Hernández, D.; Luna-moreno, D.; Escobar, D.M.; Villatoro, J.; Martínez, D. Optical microfibers decorated with PdAu nanoparticles for fast hydrogen sensing. Sens. Actuators B Chem. 2010, 151, 219–222. [Google Scholar] [CrossRef]
- Wadell, C.; Nugroho, F.A.A.; Lidström, E.; Iandolo, B.; Wagner, J.B.; Langhammer, C. Hysteresis-Free Nanoplasmonic Pd–Au Alloy Hydrogen Sensors. Nano Lett. 2015, 15, 3563–3570. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Zeng, H.; Zhu, Y.B.; Yang, Q.; Ang, L.K.; Zhuang, S. Single-Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection. Adv. Opt. Mater. 2014, 2, 189–196. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 2004, 126, 8648–8649. [Google Scholar] [CrossRef] [PubMed]
- Markelonis, A.R.; Wang, J.S.; Ullrich, B.; Wai, C.M.; Brown, G.J. Nanoparticle film deposition using a simple and fast centrifuge sedimentation method. Appl. Nanosci. 2015, 5, 457–468. [Google Scholar] [CrossRef]
- Zhao, Z.; Sevryugina, Y.; Carpenter, M.A.; Welch, D.; Xia, H. All-optical hydrogen-sensing materials based on tailored palladium alloy thin films. Anal. Chem. 2004, 76, 6321–6326. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Fan, F.; Tian, Z.; Wang, Z. Atomic structure of Au−Pd bimetallic alloyed nanoparticles. J. Am. Chem. Soc. 2010, 132, 12480–12486. [Google Scholar] [CrossRef] [PubMed]
Hydrogen Concentration (%) | Response Amplitude (mV) | Response Time (s) | Recovery Time (s) |
---|---|---|---|
4% | 43.9 | 62 | 348 |
2% | 34.8 | 190 | 401 |
1% | 18.0 | 270 | 349 |
0.5% | 8.9 | 300 | 363 |
0.1% | 1.2 | 330 | 318 |
Film Component | Response Amplitude (mV) | Response Time (s) | Recovery Time (s) |
---|---|---|---|
40 nm Au | 0 | - | - |
44 nm Au-Pd | 2.8 | 4 | 30 |
48 nm Au-Pd | 7.1 | 8 | 94 |
54 nm Au-Pd | 8.4 | 14 | 159 |
64 nm Au-Pd | 43.9 | 62 | 348 |
Author, Reference | Sensing Film Component | Concentration Range | Response Time |
---|---|---|---|
This paper | 44 nm Au-Pd core-shell NPs film | 0.1–4% | 4 s at 4% H2 |
Zhao [6] | 20 nm Pd0.6Au0.4 alloy film | 0.05–4% | 5 s at 4% H2 |
Perrotton [7] | 2.5 nm Pd/35 nm Au/180 nm SiO2 composite film | 0.5–4% | 3 s at 4% H2 |
Sirbuly [16] | POSS-Pd NPs | 0.8–8% | 3 s at 3% H2 |
Monzón-Hernández [17] | Annealed Au-Pd NPs | 0.8–8% | 2 s at 4% H2 |
Wadell [18] | Annealed Au-Pd alloy nanodisk | Up to 4% | <1 s at 4% H2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Luo, Z.; Liu, M.; Zhang, G.; Peng, W.; Wang, B.; Zhu, Y. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas. Sensors 2018, 18, 1448. https://doi.org/10.3390/s18051448
Song H, Luo Z, Liu M, Zhang G, Peng W, Wang B, Zhu Y. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas. Sensors. 2018; 18(5):1448. https://doi.org/10.3390/s18051448
Chicago/Turabian StyleSong, Han, Zhijie Luo, Mingyao Liu, Gang Zhang, Wang Peng, Boyi Wang, and Yong Zhu. 2018. "Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas" Sensors 18, no. 5: 1448. https://doi.org/10.3390/s18051448
APA StyleSong, H., Luo, Z., Liu, M., Zhang, G., Peng, W., Wang, B., & Zhu, Y. (2018). Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas. Sensors, 18(5), 1448. https://doi.org/10.3390/s18051448