A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Probe Fabrication
2.3. Electrochemical Synthesis of MIP
2.4. Experimental Setup
3. Results and Discussion
3.1. Electropolymerization of Molecularly Imprinted Film
3.2. FTIR Microspectroscopy of MIP Film
3.3. Surface Morphology Characterization by AFM
3.4. Melamine Detection Based on Resonance Wavelength Modulation
3.5. Limit of Detection (LOD)
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Muñiz-Valencia, R.; Ceballos-Magaña, S.G.; Rosales-Martinez, D.; Gonzalo-Lumbreras, R.; Santos-Montes, A.; Cubedo-Fernandez-Trapiella, A.; Cubedo-Fernandez-Trapiella, A.; Izquierdo-Hornillos, R.C. Method development and validation for melamine and its derivatives in rice concentrates by liquid chromatography. Application to animal feed samples. Anal. Bioanal. Chem. 2008, 392, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Feng, S.; Gao, F.; Li-Chan, E.C.Y.; Grant, E.; Lu, X. Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem. 2015, 176 (Suppl. C), 123–129. [Google Scholar] [CrossRef] [PubMed]
- Tyan, Y.-C.; Yang, M.-H.; Jong, S.-B.; Wang, C.-K.; Shiea, J. Melamine contamination. Anal. Bioanal. Chem. 2009, 395, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A.; Jeong, K.-S.; Poppenga, R.H.; Puschner, B.; Miller, D.M.; Ellis, A.E.; Kang, K.I.; Sum, S.; Cistola, A.M.; Brown, S.A. Outbreaks of Renal Failure Associated with Melamine and Cyanuric Acid in Dogs and Cats in 2004 and 2007. J. Vet. Diagn. Investig. 2007, 19, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Filigenzi, M.S.; Puschner, B.; Aston, L.S.; Poppenga, R.H. Diagnostic Determination of Melamine and Related Compounds in Kidney Tissue by Liquid Chromatography/Tandem Mass Spectrometry. J. Agric. Food Chem. 2008, 56, 7593–7599. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Zhou, L.; Zhu, Z.; Chen, X. Determination of Melamine in Dairy Products, Fish Feed, and Fish by Capillary Zone Electrophoresis with Diode Array Detection. J. Agric. Food Chem. 2009, 57, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Tandon, A.; Alldrick, A.; Giorgi, L.; Huang, W.; Yang, R. The China melamine milk scandal and its implications for food safety regulation. Food Policy 2011, 36, 412–420. [Google Scholar] [CrossRef]
- Xiu, C.; Klein, K.K. Melamine in milk products in China: Examining the factors that led to deliberate use of the contaminant. Food Policy 2010, 35, 463–470. [Google Scholar] [CrossRef]
- Kim, C.-W.; Yun, J.-W.; Bae, I.-H.; Lee, J.-S.; Kang, H.-J.; Joo, K.-M.; Jeong, H.J.; Chung, J.H.; Park, Y.H.; Lim, K.M. Determination of Spatial Distribution of Melamine−Cyanuric Acid Crystals in Rat Kidney Tissue by Histology and Imaging Matrix-Assisted Laser Desorption/Ionization Quadrupole Time-of-Flight Mass Spectrometry. Chem. Res. Toxicol. 2010, 23, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Ma, W.; Xu, L.; Zhu, Y.; Liu, L.; Peng, C.; Wang, L.; Kuang, H.; Xu, C. Analytical methods and recent developments in the detection of melamine. TrAC Trends Anal. Chem. 2010, 29, 1239–1249. [Google Scholar] [CrossRef]
- Yokley, R.A.; Mayer, L.C.; Rezaaiyan, R.; Manuli, M.E.; Cheung, M.W. Analytical Method for the Determination of Cyromazine and Melamine Residues in Soil Using LC-UV and GC-MSD. J. Agric. Food Chem. 2000, 48, 3352–3358. [Google Scholar] [CrossRef] [PubMed]
- Ehling, S.; Tefera, S.; Ho, I.P. High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid. Food Addit. Contam. 2007, 24, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, S.; Liu, Q.; Xu, Q.; Xu, S.; Chen, H. Determination of Residues of Cyromazine and Its Metabolite, Melamine, in Animal-Derived Food by Gas Chromatography−Mass Spectrometry with Derivatization. J. Agric. Food Chem. 2009, 57, 11075–11080. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ren, Y.; Zhu, Y.; Cai, Z.; Han, J.; Huang, B.; Zhu, Y. Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal. Chim. Acta 2009, 650, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Andersen, W.C.; Turnipseed, S.B.; Karbiwnyk, C.M.; Clark, S.B.; Madson, M.R.; Gieseker, C.M.; Miller, R.A.; Rummel, N.G.; Reimschuessel, R. Determination and Confirmation of Melamine Residues in Catfish, Trout, Tilapia, Salmon, and Shrimp by Liquid Chromatography with Tandem Mass Spectrometry. J. Agric. Food Chem. 2008, 56, 4340–4347. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zeng, Q.; Du, X.; Sun, X.; Zhang, X.; Xu, Y.; Yu, A.; Zhang, H.; Ding, L. Determination of melamine in animal feed based on liquid chromatography tandem mass spectrometry analysis and dynamic microwave-assisted extraction coupled on-line with strong cation-exchange resin clean-up. Anal. Bioanal. Chem. 2009, 395, 1533. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.; Sancho, J.V.; Hernández, F. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2009, 649, 91–97. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, S.; Begley, T.H.; Diachenko, G.W.; Stromgren, S.A. A liquid chromatography–tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods. J. Chromatogr. A 2012, 1220 (Suppl. C), 101–107. [Google Scholar] [CrossRef] [PubMed]
- Filigenzi, M.S.; Tor, E.R.; Poppenga, R.H.; Aston, L.A.; Puschner, B. The determination of melamine in muscle tissue by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 4027–4032. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; He, L.; Awika, J.; Yang, L.; Ledoux, D.R.; Li, H.A.; Mustapha, A. Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC. J. Food Sci. 2008, 73, T129–T134. [Google Scholar] [CrossRef] [PubMed]
- Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Deering, A.; Davis, R. Melamine Detection in Infant Formula Powder Using Near- and Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Humpfer, E.; Fang, F.; Schütz, B.; Dvortsak, P.; Sproll, C.; Spraul, M. NMR-Spectroscopy for Nontargeted Screening and Simultaneous Quantification of Health-Relevant Compounds in Foods: The Example of Melamine. J. Agric. Food Chem. 2009, 57, 7194–7199. [Google Scholar] [CrossRef] [PubMed]
- Garber, E.A.E. Detection of Melamine Using Commercial Enzyme-Linked Immunosorbent Assay Technology. J. Food Prot. 2008, 71, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gai, P.; Hao, T.; Wang, S.; Wei, D.; Gan, N. Determination of melamine in dairy products by an electrochemiluminescent method combined with solid-phase extraction. Talanta 2011, 83, 1736–1741. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, D.; Gao, X.; Song, Z. Subpicogram Determination of Melamine in Milk Products Using a Luminol−Myoglobin Chemiluminescence System. J. Agric. Food Chem. 2009, 57, 3464–3469. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, C.; Dai, P.; Ge, S. Highly selective molecular recognition and high throughput detection of melamine based on molecularly imprinted sol–gel film. Anal. Chim. Acta 2009, 651, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Marx, S.; Liron, Z. Molecular Imprinting in Thin Films of Organic−Inorganic Hybrid Sol−Gel and Acrylic Polymers. Chem. Mater. 2001, 13, 3624–3630. [Google Scholar] [CrossRef]
- Lahav, M.; Kharitonov, A.B.; Katz, O.; Kunitake, T.; Willner, I. Tailored Chemosensors for Chloroaromatic Acids Using Molecular Imprinted TiO2 Thin Films on Ion-Sensitive Field-Effect Transistors. Anal. Chem. 2001, 73, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, G.; Li, H.; Liu, Q.; Zhang, S.; Kong, J. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta 2009, 78, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Nie, L.; Yao, S. Electrodeposited sol–gel-imprinted sensing film for cytidine recognition on Au-electrode surface. Talanta 2006, 69, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Piacham, T.; Josell, Å.; Arwin, H.; Prachayasittikul, V.; Ye, L. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal. Chim. Acta 2005, 536, 191–196. [Google Scholar] [CrossRef]
- Quaglia, M.; De Lorenzi, E.; Sulitzky, C.; Massolini, G.; Sellergren, B. Surface initiated molecularly imprinted polymer films: A new approach in chiral capillary electrochromatography. Analyst 2001, 126, 1495–1498. [Google Scholar] [CrossRef]
- Lee, B.; Roh, S.; Park, J. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 2009, 15, 209–221. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B3) using molecularly imprinted hydrogel. Sens. Actuators B Chem. 2013, 177 (Suppl. C), 279–285. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuators B Chem. 2014, 191 (Suppl. C), 529–536. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst 2013, 138, 7254–7263. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 2016, 79 (Suppl. C), 150–157. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Fiber optic SPR sensor for the detection of melamine using molecular imprinting. Sens. Actuators B Chem. 2015, 212 (Suppl. C), 404–410. [Google Scholar] [CrossRef]
- Lépinay, S.; Ianoul, A.; Albert, J. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules. Talanta 2014, 128 (Suppl. C), 401–407. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; Donà, A.; Pallavicini, P.; D’Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens. Actuators B Chem. 2015, 208 (Suppl. C), 291–298. [Google Scholar] [CrossRef]
- Agrawal, H.; Shrivastav, A.M.; Gupta, B.D. Surface plasmon resonance based optical fiber sensor for atrazine detection using molecular imprinting technique. Sens. Actuators B Chem. 2016, 227 (Suppl. C), 204–211. [Google Scholar] [CrossRef]
- Sharma, P.S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Penelle, J.; Rotello, V.M. Selective Picomolar Detection of Hexachlorobenzene in Water Using a Quartz Crystal Microbalance Coated with a Molecularly Imprinted Polymer Thin Film. Langmuir 2003, 19, 3921–3925. [Google Scholar] [CrossRef]
- Shi, F.; Liu, Z.; Wu, G.L.; Zhang, M.; Chen, H.; Wang, Z.Q.; Zhang, X.; Willner, I. Surface Imprinting in Layer-by-Layer Nanostructured Films. Adv. Funct. Mater. 2007, 17, 1821–1827. [Google Scholar] [CrossRef]
- Niu, J.; Liu, Z.; Fu, L.; Shi, F.; Ma, H.; Ozaki, Y.; Zhang, X. Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir 2008, 24, 11988–11994. [Google Scholar] [CrossRef] [PubMed]
- Malitesta, C.; Losito, I.; Zambonin, P.G. Molecularly Imprinted Electrosynthesized Polymers: New Materials for Biomimetic Sensors. Anal. Chem. 1999, 71, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Myler, S.; Eaton, S.; Higson, S.P.J. Poly(o-phenylenediamine) ultra-thin polymer-film composite membranes for enzyme electrodes. Anal. Chim. Acta 1997, 357, 55–61. [Google Scholar] [CrossRef]
- Malitesta, C.; Palmisano, F.; Torsi, L.; Zambonin, P.G. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem. 1990, 62, 2735–2740. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, M.; Mirzaei, M.; Daneshpajooh, M. Carbon nanotubes/poly-ortho-aminophenol composite as a new coating for the headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal. Methods 2014, 6, 9234–9241. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Arias, J.; Garcés, P.; Morallón, E.; Barbero, C.; Vázquez, J.L. Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. J. Electroanal. Chem. 2004, 565, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lian, J. Electrochemical synthesis of copolymer of aniline and o-aminophenol and its use to the electrocatalytic oxidation of ascorbic acid. J. Electroanal. Chem. 2007, 611, 51–59. [Google Scholar] [CrossRef]
- Abd El-Ghaffar, M.A.; Abdel-Wahab, N.A.; Sanad, M.A.; Sabaa, M.W. High performance anti-corrosive powder coatings based on phosphate pigments containing poly(o-aminophenol). Prog. Org. Coat. 2015, 78 (Suppl. C), 42–48. [Google Scholar] [CrossRef]
- Liu, M.; Ye, M.; Yang, Q.; Zhang, Y.; Xie, Q.; Yao, S. A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty. Electrochim. Acta 2006, 52, 342–352. [Google Scholar] [CrossRef]
- Hosny, N.M.; Nowesser, N.; Al Hussaini, A.S.; Zoromba, M.S. Solid State Synthesis of Hematite Nanoparticles from Doped Poly o-aminophenol (POAP). J. Inorg. Organomet. Polym. Mater. 2016, 26, 41–47. [Google Scholar] [CrossRef]
- Sayyah, S.M.; El-Rabiey, M.M.; El-Rehim, S.S.A.; Azooz, R.E. Electropolymerization kinetics of o-aminophenol and characterization of the obtained polymer films. J. Appl. Polym. Sci. 2006, 99, 3093–3109. [Google Scholar] [CrossRef]
- Ohsaka, T.; Kunimura, S.; Oyama, N. Electrode kinetics of poly (o-aminophenol) film prepared by electro-oxidative polymerization of o-aminophenol and its electrochromic properties. Electrochim. Acta 1988, 33, 639–645. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Ng, S.-C.; Chan, H.S.-O. Enantioselective molecular imprinting polymer coated QCM for the recognition of l-tryptophan. Sens. Actuators B Chem. 2006, 113, 234–240. [Google Scholar] [CrossRef]
- Jenik, M.; Schirhagl, R.; Schirk, C.; Hayden, O.; Lieberzeit, P.; Blaas, D.; Paul, G.; Dickert, F.L. Sensing Picornaviruses Using Molecular Imprinting Techniques on a Quartz Crystal Microbalance. Anal. Chem. 2009, 81, 5320–5326. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Zhang, R.; Qin, W. Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sens. Actuators B Chem. 2009, 141, 544–550. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P.F. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76 (Suppl. C), 131–144. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, Z.; Zhao, D.; Lu, X. A novel molecularly imprinted impedimetric sensor for melamine determination. Talanta 2012, 101 (Suppl. C), 374–381. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ding, J.; Zheng, J.; Hu, B.; Li, J.; Chen, H.; Zhou, Z.; Qiao, X. Detection of Melamine in Milk Products by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry. Anal. Chem. 2009, 81, 2426–2436. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zhao, H.; Zeng, L.; Wang, J.; Wang, R.; Qiu, X.; He, Y. Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 2009, 80, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Braekevelt, E.; Lau, B.P.Y.; Feng, S.; Ménard, C.; Tittlemier, S.A. Determination of melamine, ammeline, ammelide and cyanuric acid in infant formula purchased in Canada by liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2011, 28, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Sancho, J.V.; Ibáñez, M.; Grimalt, S.; Pozo, Ó.J.; Hernández, F. Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry. Anal. Chim. Acta 2005, 530, 237–243. [Google Scholar] [CrossRef]
- Xia, X.; Ding, S.; Li, X.; Gong, X.; Zhang, S.; Jiang, H.; Li, J.; Shen, J. Validation of a confirmatory method for the determination of melamine in egg by gas chromatography–mass spectrometry and ultra-performance liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2009, 651, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Deng, J.; Xiao, X.L.; Ding, L.; Yuan, Y.L.; Li, H.; Li, X.T.; Yan, X.N.; Wang, L.L. Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim. Acta 2011, 56, 4595–4602. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Huang, C.-M.; Lin, C.-C.; Ho, W.-A.; Lin, L.-C.; Chiu, T.-F.; Tarng, D.C.; Lin, C.H.; Tsai, T.H. Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 7595–7601. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Fan, S.; Wu, Y.-N.; Zhang, L.; Zhou, P.-P.; Chen, H.-J.; Zhao, Y.-F.; Li, J.-G. Simultaneous Determination of Melamine, Ammelide, Ammeline, and Cyanuric Acid in Milk and Milk Products by Gas Chromatography-tandem Mass Spectrometry. Biomed. Environ. Sci. 2009, 22, 87–94. [Google Scholar] [CrossRef]
- Rima, J.; Abourida, M.; Xu, T.; Cho, I.K.; Kyriacos, S. New spectrophotometric method for the quantitative determination of melamine using Mannich reaction. J. Food Compos. Anal. 2009, 22, 689–693. [Google Scholar] [CrossRef]
- Klampfl, C.W.; Andersen, L.; Haunschmidt, M.; Himmelsbach, M.; Buchberger, W. Analysis of melamine in milk powder by CZE using UV detection and hyphenation with ESI quadrupole/TOF MS detection. Electrophoresis 2009, 30, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, A.; Kutner, W.; Chitta, R.; Zandler, M.E.; D’Souza, F.; Sannicolò, F.; Mussini, P.R. Melamine Acoustic Chemosensor Based on Molecularly Imprinted Polymer Film. Anal. Chem. 2009, 81, 10061–10070. [Google Scholar] [CrossRef] [PubMed]
Vibration Assignments for PoAP | Wave Number, |
---|---|
N–H stretching vibrations in secondary amines [51,52,53] | 3351 |
N-H bending | 1593 |
C=C stretching of aromatic ring | 1501 |
O–H deformation vibration and C–O stretching vibration of phenols [52,53] | 1274 |
C–O stretching vibration of phenols [51] | 1207 |
Vibration assignments for oAP | Wave number, |
N-H bending in primary amines [54,55] | 1585 |
C=C stretching of aromatic ring | 1612 |
C=C stretching of aromatic ring [51,53,54,55] | 1512 |
C=C stretching of aromatic ring [51,55] | 1478 |
Asymmetrical N–H stretching vibrations [51] | 3377 |
Symmetrical N–H stretching vibrations [51] | 3307 |
C–O–H deformation vibrations of phenols [51,53,54,56] | 1407 |
O–H deformation vibration and C–O stretching vibration of phenols [52,53] | 1270 |
C–O stretching vibration of phenols [51,52,53] | 1216 |
Technique | Operating Range | Limit of Detection |
---|---|---|
This work | ||
Impedimetric probe [63] | ||
LC–UV and GC–MSD [11] | – | 10 ppb |
DAPCI–MS [64] | ||
HPLC [12] | – | 5 |
Electrochemical probe [65] | ||
LC/MS [66] | – | 0.008 |
Ion–pair LC–ESI–MS/MS [67] | 0.5–100 | 0.01 |
GC–MS and UPLC–MS/MS [68] | 1–1000 and 5–1000 | 10 and 5 |
GC/MS [14] | 0.05–2 | 0.01 |
Electrochemistry (MIP/GCE) [69] | ||
Electrochemistry (oligonucleotides/Au) [65] | ||
MIP/CL [26] | 0.02 | |
Electrochemistry (MIP/potentiometric probe) [61] | ||
LC [1] | 1–400 | 65 |
HPLC–MS/MS [70] | 20–500 | |
GC–MS/MS [71] | 0.04–1.6 | 0.002 |
UV [72] | 1.26–10 | |
CZE [73] | – | |
Electrochemistry (acoustic probe) [74] | 5 nM–1 mM | 5 nM |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zheng, Y.; Zhang, T.; Wu, S.; Zhang, J.; Fang, J. A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection. Sensors 2018, 18, 828. https://doi.org/10.3390/s18030828
Li W, Zheng Y, Zhang T, Wu S, Zhang J, Fang J. A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection. Sensors. 2018; 18(3):828. https://doi.org/10.3390/s18030828
Chicago/Turabian StyleLi, Wei, Yongping Zheng, Tingwei Zhang, Songjie Wu, Jue Zhang, and Jing Fang. 2018. "A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection" Sensors 18, no. 3: 828. https://doi.org/10.3390/s18030828
APA StyleLi, W., Zheng, Y., Zhang, T., Wu, S., Zhang, J., & Fang, J. (2018). A Surface Plasmon Resonance-Based Optical Fiber Probe Fabricated with Electropolymerized Molecular Imprinting Film for Melamine Detection. Sensors, 18(3), 828. https://doi.org/10.3390/s18030828