HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Abstract
:1. Introduction
2. Sensor Characteristics
2.1. RISING-2 Microsatellite
2.2. High Precision Telescope (HPT)
3. Image Analysis Methods and Results
3.1. Color Images
3.2. Multispectral Images
4. Future Research
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Buchen, E. Small Satellite Market Observations. In Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, USA, 8–13 August 2015. SSC15-VII-7. [Google Scholar]
- Sandau, R.; Brieß, K.; D’Errico, M. Small satellites for global coverage: Potential and limits. ISPRS J. Photogramm. Remote Sens. 2010, 65, 492–504. [Google Scholar] [CrossRef]
- Roberto, R.D.; Nascetti, A.; Paolozzi, A.; Paris, C. Optical payload for high-resolution Earth imaging suitable for microsatellites. In Proceedings of the IEEE 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015. [Google Scholar]
- Staenz, K.; Mueller, A.; Heiden, U. Overview of terrestrial imaging spectroscopy missions. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, Australia, 21–26 July 2013; pp. 3502–3505. [Google Scholar]
- Guelman, M.; Ortenberg, F. Small satellite’s role in future hyperspectral Earth observation missions. Acta Astronaut. 2009, 64, 1252–1263. [Google Scholar] [CrossRef]
- Villafranca, A.G.; Corbera, J.; Martín, F.; Marchán, J.F. Limitations of hyperspectral Earth observation on small satellites. J. Small Satell. 2012, 1, 19–29. [Google Scholar]
- Lier, P.; Bach, M. PARASOL a microsatellite in the A-Train for Earth atmospheric observations. Acta Astronaut. 2008, 62, 257–263. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Sugimura, N.; Fukuda, K.; Kuwahara, T.; Yoshida, K.; Kurihara, J.; Fukuhara, T.; Takahashi, Y. Development and Flight Results of Microsatellite Bus System for RISING-2. Trans. JSASS Aerosp. Technol. Jpn. 2016, 14, Pf_89–Pf_96. [Google Scholar] [CrossRef]
- Yoshida, K.; Takahashi, Y.; Sakamoto, Y.; Ujiie, E.; Takiuchi, K.; Nakazato, Y.; Sawakami, T.; Sakanoi, T.; Kasaba, Y.; Kondo, S.; et al. SPRITE-SAT: A Micro Satellite for Scientific Observation of Transient Luminous Events and Terrestrial Gamma-ray Flashes. Trans. JSASS Aerosp. Technol. Jpn. 2010, 8, Tm_7–Tm_12. [Google Scholar] [CrossRef]
- Fukuda, K.; Nakano, T.; Sakamoto, Y.; Kuwahara, T.; Yoshida, K.; Takahashi, Y. Attitude control system of micro satellite RISING-2. In Proceedings of the IEEE/SICE International Symposium on System Integration, Sendai, Japan, 21–22 December 2010; pp. 373–378. [Google Scholar]
- Gat, N. Imaging spectroscopy using tunable filters: A review. In Proceedings of the AeroSense 2000, Orlando, FL, USA, 24–28 April 2000. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Takahashi, Y.; Marciano, J.J., Jr. A novel approach for vegetation classification using UAV-based hyperspectral imaging. Comput. Electron. Agric. 2018, 144, 80–85. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. Image-based atmospheric correction—Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- IOCCG. Minimum Requirements for an Operational, Ocean. In Reports of the International Ocean-Color Coordinating Group, No. 1; Morel, A., Ed.; IOCCG: Dartmouth, NS, Canada, 1998. [Google Scholar]
- Kuwahara, T.; Yoshida, K.; Sakamoto, Y.; Tomioka, Y.; Fukuda, K.; Fukuyama, M.; Shibuya, Y. International Scientific Micro-satellite RISESAT based on Space Plug and Play Avionics. In Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2012. [Google Scholar]
Size | 380 mm × 161 mm × 124 mm |
---|---|
Weight | 3 kg |
Focal length | 1000 mm |
Aperture diameter | 100 mm |
Ground sample distance | 4.6 m (at nadir from 628 km altitude) |
Field of view | 0.28° × 0.21° (3.1 × 2.3 km at nadir from 628 km altitude) |
Spectral bands | Blue: 400–510 nm Green: 520–600 nm Red: 610–650 nm NIR: 401 bands selectable at 1-nm intervals from 650 to 1050 nm |
Image size | 659 × 494 pixels |
Data quantization | 10 bit |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurihara, J.; Takahashi, Y.; Sakamoto, Y.; Kuwahara, T.; Yoshida, K. HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing. Sensors 2018, 18, 619. https://doi.org/10.3390/s18020619
Kurihara J, Takahashi Y, Sakamoto Y, Kuwahara T, Yoshida K. HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing. Sensors. 2018; 18(2):619. https://doi.org/10.3390/s18020619
Chicago/Turabian StyleKurihara, Junichi, Yukihiro Takahashi, Yuji Sakamoto, Toshinori Kuwahara, and Kazuya Yoshida. 2018. "HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing" Sensors 18, no. 2: 619. https://doi.org/10.3390/s18020619
APA StyleKurihara, J., Takahashi, Y., Sakamoto, Y., Kuwahara, T., & Yoshida, K. (2018). HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing. Sensors, 18(2), 619. https://doi.org/10.3390/s18020619