Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer †
Abstract
:1. Introduction
2. General Review on Mammography
2.1. Effect on Breast Cancer Survival Rate
2.2. Main Drawbacks
2.3. Effects of False-Positive Results
3. Digital Breast Tomosynthesis
3.1. Novel Approaches in DBT
3.2. DBT Contributions to Breast Cancer Detection
4. Microwave Breast Imaging
4.1. Background
4.2. Breast Microwave Imaging at Experimental and Simulation Stage
5. A Bimodal System: DBT Plus NRI
5.1. Antipodal Vivaldi Antennas
5.2. Selecting the Coupling Liquid
- (i)
- The liquid must have a permittivity between that of the ceramic used as the antenna substrate and that of the breast ().
- (ii)
- The liquid must be non-toxic, non-carcinogenic, chemically stable, and possess relatively low viscosity and evaporation rate at the room temperature.
- (iii)
- The AVAs must demonstrate acceptable performance in simulations using the selected liquid’s characteristics. The factors that need to be considered in the performance quality evaluation are the following: high directivity and a return loss above 10 dB.
5.3. Mechatronic System
5.4. The Bearing Ball Experiment
6. The SAR Simulation
7. Imaging Algorithm
8. Results
8.1. SAR Analysis
8.2. Bearing Ball Imaging
9. Discussion
10. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MGH | Massachuestts General Hospital |
DBT | Digital Breat Tomosynthesis |
NRI | Near-field Radar Imaging |
SAR | Specific Absoprtion Rate |
FP | False-positive |
FN | False-negative |
BSE | Breast self-examination |
FFDM | Full-field Digital Mammography |
UWB | Ultra-wideband |
NRIMS | Near-field Radar Imaging Mechatronic System |
AVA | Antipodal Vivaldi Antenna |
PNA | Programmable Network Analyzer |
FCC | Federal Communications Commission |
CEU | The Council of European Union |
References
- U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report.Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. 2016. Available online: https://nccd.cdc.gov/uscs/toptencancers.aspx (accessed on 17 May 2017).
- American Cancer Society. Breast Cancer Facts & Figures 2013–2014; American Cancer Society, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- Howlader, N.; Noone, A.; Krapcho, M.; Garshell, J.; Neyman, N.; Altekruse, S.; Kosary, C.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review, 1975–2010; National Cancer Institute: Bethesda, MD, USA, 2013.
- Hubbard, R.A.; Kerlikowske, K.; Flowers, C.I.; Yankaskas, B.C.; Zhu, W.; Miglioretti, D.L. Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: A cohort study. Ann. Intern. Med. 2011, 155, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.; Mariscotti, G.; Durando, M.; Stevanin, C.; Tagliafico, G.; Martino, L.; Bignotti, B.; Calabrese, M.; Houssami, N. Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): Does DBT underestimate microcalcification clusters? Results of a multicentre study. Eur. Radiol. 2015, 25, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Karahaliou, A.; Skiadopoulos, S.; Boniatis, I.; Sakellaropoulos, P.; Likaki, E.; Panayiotakis, G.; Costaridou, L. Texture analysis of tissue surrounding microcalcifications on mammograms for breast cancer diagnosis. Br. J. Radiol. 2014, 80, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.; Glavin, M.; Jones, E.; O’Halloran, M.; Conceição, R. Avoiding unnecessary breast biopsies: Clinically-informed 3D breast tumour models for microwave imaging applications. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014. [Google Scholar]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [PubMed]
- Willett, W.C.; Koplan, J.P.; Nugent, R.; Dusenbury, C.; Puska, P.; Gaziano, T.A. Prevention of chronic disease by means of diet and lifestyle changes. In Disease Control Priorities in Developing Countries; The World Bank Group: Washington, DC, USA, 2006. [Google Scholar]
- World Health Organization. Cancer. Available online: http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on 5 May 2017).
- American Cancer Society. Breast Cancer Prevention and Early Detection; American Cancer Society, Inc.: Atlanta, GA, USA, 2013. [Google Scholar]
- Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.F.; Feuer, E.J. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 2005, 353, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Blanks, R.; Moss, S.; McGahan, C.; Quinn, M.; Babb, P. Effect of NHS breast screening programme on mortality from breast cancer in England and Wales, 1990-8: Comparison of observed with predicted mortality. BMJ 2000, 321, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.J.; Fracheboud, J.; Looman, C.W.; Broeders, M.J.; Boer, R.; Hendriks, J.H.; Verbeek, A.L.; de Koning, H.J.; National Evaluation Team for Breast Cancer Screening. Initiation of population-based mammography screening in Dutch municipalities and effect on breast-cancer mortality: A systematic review. Lancet 2003, 361, 1411–1417. [Google Scholar] [CrossRef]
- Lenner, P.; Jonsson, H. Excess mortality from breast cancer in relation to mammography screening in northern Sweden. J. Med. Screen. 1997, 4, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Nyström, L.; Törnberg, S.; Lenner, P. Service screening with mammography of women aged 50–69 years in Sweden: Effects on mortality from breast cancer. J. Med. Screen. 2001, 8, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, H.; Bordás, P.; Wallin, H.; Nyström, L.; Lenner, P. Service screening with mammography in Northern Sweden: Effects on breast cancer mortality—An update. J. Med. Screen. 2007, 14, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.H.; Njor, S.H.; Vejborg, I.; Schwartz, W.; Dalgaard, P.; Jensen, M.B.; Tange, U.B.; Blichert-Toft, M.; Rank, F.; Mouridsen, H.; et al. Breast cancer mortality in Copenhagen after introduction of mammography screening: Cohort study. BMJ 2005, 330, 220. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Dershaw, D.D.; Kopans, D.; Evans, P.; Monsees, B.; Monticciolo, D.; Brenner, R.J.; Bassett, L.; Berg, W.; Feig, S.; et al. Breast cancer screening with imaging: Recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 2010, 7, 18–27. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Position Paper on Mammography Screening; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Kalager, M.; Zelen, M.; Langmark, F.; Adami, H.O. Effect of screening mammography on breast-cancer mortality in Norway. N. Engl. J. Med. 2010, 363, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.; Welch, H.G. Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 2012, 367, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.B.; Wall, C.; Baines, C.J.; Sun, P.; To, T.; Narod, S.A. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: Randomised screening trial. BMJ 2014, 348, g366. [Google Scholar] [CrossRef] [PubMed]
- Gøtzsche, P.C. Mammography screening is harmful and should be abandoned. J. R. Soc. Med. 2015, 108, 341–345. [Google Scholar]
- Kopans, D.B. Digital breast tomosynthesis from concept to clinical care. Am. J. Roentgenol. 2014, 202, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.L.; Wang, F.; Barton, M.B.; Kreuter, W.; Elmore, J.G.; Gelfand, A.E.; Fletcher, S.W. Predicting the cumulative risk of false-positive mammograms. J. Natl. Cancer Inst. 2000, 92, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Castells, X.; Molins, E.; Macià, F. Cumulative false positive recall rate and association with participant related factors in a population based breast cancer screening programme. J. Epidemiol. Community Health 2006, 60, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Warren Burhenne, L.J.; Wood, S.A.; D’Orsi, C.J.; Feig, S.A.; Kopans, D.B.; O’Shaughnessy, K.F.; Sickles, E.A.; Tabar, L.; Vyborny, C.J.; Castellino, R.A. Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology 2000, 215, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Kerlikowske, K.; Grady, D.; Barclay, J.; Sickles, E.A.; Ernster, V. Effect of age, breast density, and family history on the sensitivity of first screening mammography. JAMA 1996, 276, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gram, I.; Lund, E.; Slenker, S. Quality of life following a false positive mammogram. Br. J. Cancer 1990, 62, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G.; Passow, H.J. Quantifying the benefits and harms of screening mammography. JAMA Intern. Med. 2014, 174, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Brewer, N.T.; Salz, T.; Lillie, S.E. Systematic review: The long-term effects of false-positive mammograms. Ann. Intern. Med. 2007, 146, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Aro, A.R.; Absetz, S.P.; van Elderen, T.M.; van der Ploeg, E.; van der Kamp, L.T. False-positive findings in mammography screening induces short-term distress—Breast cancer-specific concern prevails longer. Eur. J. Cancer 2000, 36, 1089–1097. [Google Scholar] [CrossRef]
- Lampic, C.; Thurfjell, E.; Sjödén, P.O. The influence of a false-positive mammogram on a woman’s subsequent behaviour for detecting breast cancer. Eur. J. Cancer 2003, 39, 1730–1737. [Google Scholar] [CrossRef]
- Burman, M.L.; Taplin, S.H.; Herta, D.F.; Elmore, J.G. Effect of false-positive mammograms on interval breast cancer screening in a health maintenance organization. Ann. Intern. Med. 1999, 131, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tosteson, A.N.; Fryback, D.G.; Hammond, C.S.; Hanna, L.G.; Grove, M.R.; Brown, M.; Wang, Q.; Lindfors, K.; Pisano, E.D. Consequences of false-positive screening mammograms. JAMA Intern. Med. 2014, 174, 954–961. [Google Scholar] [CrossRef] [PubMed]
- McCann, J.; Stockton, D.; Godward, S. Impact of false-positive mammography on subsequent screening attendance and risk of cancer. Breast Cancer Res. 2002, 4, R11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, L.M.; Hubbard, R.A.; Sprague, B.L.; Zhu, W.; Kerlikowske, K. Increased risk of developing breast cancer after a false-positive screening mammogram. Cancer Epidemiol. Prev. Biomark. 2015, 24, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Castells, X.; Roman, M.; Romero, A.; Blanch, J.; Zubizarreta, R.; Ascunce, N.; Salas, D.; Burón, A.; Sala, M.; Cumulative False Positive Risk Group. Breast cancer detection risk in screening mammography after a false-positive result. Cancer Epidemiol. 2013, 37, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Von Euler-Chelpin, M.; Risør, L.M.; Thorsted, B.L.; Vejborg, I. Risk of breast cancer after false-positive test results in screening mammography. J. Natl. Cancer Inst. 2012, 104, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Reiter, J.F. Wounding mobilizes hair follicle stem cells to form tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 4093–4098. [Google Scholar] [CrossRef] [PubMed]
- Rigby, J.; Morris, J.; Lavelle, J.; Stewart, M.; Gatrell, A. Can physical trauma cause breast cancer? Eur. J. Cancer Prev. 2002, 11, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.M.; Ye, X.; Grube, B.J.; Giuliano, A.E. Manipulation of the primary breast tumor and the incidence of sentinel node metastases from invasive breast cancer. Arch. Surg. 2004, 139, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Pastor-Pareja, J.C.; Xu, T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature 2010, 463, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Pijpe, A.; Andrieu, N.; Easton, D.F.; Kesminiene, A.; Cardis, E.; Noguès, C.; Gauthier-Villars, M.; Lasset, C.; Fricker, J.P.; Peock, S.; et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 2012, 345, e5660. [Google Scholar] [CrossRef] [PubMed]
- Salz, T.; Richman, A.R.; Brewer, N.T. Meta-analyses of the effect of false-positive mammograms on generic and specific psychosocial outcomes. Psycho-Oncology 2010, 19, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Lillberg, K.; Verkasalo, P.K.; Kaprio, J.; Teppo, L.; Helenius, H.; Koskenvuo, M. Stressful life events and risk of breast cancer in 10,808 women: A cohort study. Am. J. Epidemiol. 2003, 157, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Chida, Y.; Hamer, M.; Wardle, J.; Steptoe, A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat. Clin. Pract. Oncol. 2008, 5, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Herbert, T.B.; Cohen, S. Stress and immunity in humans: A meta-analytic review. Psychosom. Med. 1993, 55, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Reiche, E.M.V.; Nunes, S.O.V.; Morimoto, H.K. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004, 5, 617–625. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601. [Google Scholar] [CrossRef] [PubMed]
- Currency Converter. Available online: https://www.oanda.com/currency/converter/ (accessed on 22 April 2016).
- Lidbrink, E.; Elfving, J.; Frisell, J.; Jonsson, E. Neglected aspects of false positive findings of mammography in breast cancer screening: Analysis of false positive cases from the Stockholm trial. BMJ 1996, 312, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.B.; Pisano, E.D.; Kistner, E.O.; Muller, K.E.; Brown, M.E.; Feig, S.A.; Jong, R.A.; Maidment, A.D.; Staiger, M.J.; Kuzmiak, C.M.; et al. Diagnostic accuracy of digital mammography in patients with dense breasts who underwent problem-solving mammography: Effects of image processing and lesion type. Radiology 2003, 226, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, P. Digital breast tomosynthesis. Radiol. Technol. 2009, 81, 57M–74M. [Google Scholar] [PubMed]
- Sechopoulos, I. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med. Phys. 2013, 40. [Google Scholar] [CrossRef] [PubMed]
- Pisano, E.D.; Gatsonis, C.; Hendrick, E.; Yaffe, M.; Baum, J.K.; Acharyya, S.; Conant, E.F.; Fajardo, L.L.; Bassett, L.; D’Orsi, C.; et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 2005, 353, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Franken, E.A., Jr.; Garg, M.; Fajardo, L.L.; Niklason, L.T. Breast tomosynthesis: Present considerations and future applications 1. Radiographics 2007, 27, S231–S240. [Google Scholar] [CrossRef] [PubMed]
- Teertstra, H.J.; Loo, C.E.; Van den Bosch, M.A.; Van Tinteren, H.; Rutgers, E.J.; Muller, S.H.; Gilhuijs, K.G. Breast tomosynthesis in clinical practice: Initial results. Eur. Radiol. 2010, 20, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, D.; Ciatto, S.; Pellegrini, M.; Anesi, V.; Burlon, S.; Cauli, E.; Depaoli, M.; Larentis, L.; Malesani, V.; Targa, L.; et al. Application of breast tomosynthesis in screening: Incremental effect on mammography acquisition and reading time. Br. J. Radiol. 2014, 85, e1174–e1178. [Google Scholar] [CrossRef] [PubMed]
- Gur, D.; Abrams, G.S.; Chough, D.M.; Ganott, M.A.; Hakim, C.M.; Perrin, R.L.; Rathfon, G.Y.; Sumkin, J.H.; Zuley, M.L.; Bandos, A.I. Digital breast tomosynthesis: Observer performance study. Am. J. Roentgenol. 2009, 193, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Houssami, N.; Macaskill, P.; Bernardi, D.; Caumo, F.; Pellegrini, M.; Brunelli, S.; Tuttobene, P.; Bricolo, P.; Fantò, C.; Valentini, M.; et al. Breast screening using 2D-mammography or integrating digital breast tomosynthesis (3D-mammography) for single-reading or double-reading–Evidence to guide future screening strategies. Eur. J. Cancer 2014, 50, 1799–1807. [Google Scholar] [PubMed]
- Bernardi, D.; Caumo, F.; Macaskill, P.; Ciatto, S.; Pellegrini, M.; Brunelli, S.; Tuttobene, P.; Bricolo, P.; Fantò, C.; Valentini, M.; et al. Effect of integrating 3D-mammography (digital breast tomosynthesis) with 2D-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial. Eur. J. Cancer 2014, 50, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, F.J.; Tucker, L.; Gillan, M.G.; Willsher, P.; Cooke, J.; Duncan, K.A.; Michell, M.J.; Dobson, H.M.; Lim, Y.Y.; Suaris, T.; et al. Accuracy of digital breast tomosynthesis for depicting breast cancer subgroups in a UK retrospective reading study (TOMMY trial). Radiology 2015, 277, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, C.; Tivnan, M.; Kaeli, E.; Obermeier, R.; Moore, R.; Kopans, D.; Martinez-Lorenzo, J. Fusing Microwave Radar Imaging with Digital Breast Tomosynthesis for High Contrast, High Resolution Breast Cancer Detection. In Proceedings of the RSNA 100th Scientific Assembly and Annual Meeting, Chicago, IL, USA, 30 November–5 December 2014. [Google Scholar]
- Martellosio, A.; Pasian, M.; Bozzi, M.; Perregrini, L.; Mazzanti, A.; Svelto, F.; Summers, P.E.; Renne, G.; Preda, L.; Bellomi, M. Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Trans. Microw. Theory Tech. 2017, 65, 998–1011. [Google Scholar] [CrossRef]
- Di Meo, S.; Espín-López, P.F.; Martellosio, A.; Pasian, M.; Matrone, G.; Bozzi, M.; Magenes, G.; Mazzanti, A.; Perregrini, L.; Svelto, F.; et al. On the Feasibility of Breast Cancer Imaging Systems at Millimeter-Waves Frequencies. IEEE Trans. Microw. Theory Tech. 2017, 65, 1795–1806. [Google Scholar] [CrossRef]
- Nikolova, N.K. Microwave imaging for breast cancer. IEEE Microw. Mag. 2011, 12, 78–94. [Google Scholar] [CrossRef]
- Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M.; et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007, 52, 6093. [Google Scholar] [CrossRef] [PubMed]
- Meaney, P.M.; Fanning, M.W.; Li, D.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [Google Scholar]
- Halter, R.J.; Zhou, T.; Meaney, P.M.; Hartov, A.; Barth, R.J., Jr.; Rosenkranz, K.M.; Wells, W.A.; Kogel, C.A.; Borsic, A.; Rizzo, E.J.; et al. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience. Physiol. Meas. 2009, 30, S121. [Google Scholar] [CrossRef] [PubMed]
- Golnabi, A.H. Computational Aspect of Tomographic Microwave Imaging for Biomedical Applications; Dartmouth College: Hanover, NH, USA, 2012. [Google Scholar]
- Franchois, A.; Pichot, C. Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method. IEEE Trans. Antennas Propag. 1997, 45, 203–215. [Google Scholar] [CrossRef]
- Joachimowicz, N.; Pichot, C.; Hugonin, J.P. Inverse scattering: An iterative numerical method for electromagnetic imaging. IEEE Trans. Antennas Propag. 1991, 39, 1742–1753. [Google Scholar] [CrossRef]
- Rubæk, T.; Meaney, P.M.; Meincke, P.; Paulsen, K.D. Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans. Antennas Propag. 2007, 55, 2320–2331. [Google Scholar] [CrossRef] [Green Version]
- Meaney, P.M.; Paulsen, K.D.; Ryan, T.P. Two-dimensional hybrid element image reconstruction for TM illumination. IEEE Trans. Antennas Propag. 1995, 43, 239–247. [Google Scholar] [CrossRef]
- Li, D.; Meaney, P.M.; Paulsen, K.D. Conformal microwave imaging for breast cancer detection. IEEE Trans. Microw. Theory Tech. 2003, 51, 1179–1186. [Google Scholar]
- Winters, D.W.; Shea, J.D.; Kosmas, P.; Van Veen, B.D.; Hagness, S.C. Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions. IEEE Trans. Med. Imaging 2009, 28, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, C.; Abubakar, A.; Hu, W.; Habashy, T.M.; van den Berg, P.M. Microwave biomedical data inversion using the finite-difference contrast source inversion method. IEEE Trans. Antennas Propag. 2009, 57, 1528–1538. [Google Scholar] [CrossRef]
- Dong, Q.; Rappaport, C.M. Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3664–3670. [Google Scholar] [CrossRef]
- Firoozabadi, R.; Miller, E.L. Finite element modeling of electromagnetic scattering for microwave breast cancer detection. Skin 2010, 15, 74. [Google Scholar]
- Meaney, P.M.; Fanning, M.W.; Raynolds, T.; Fox, C.J.; Fang, Q.; Kogel, C.A.; Poplack, S.P.; Paulsen, K.D. Initial clinical experience with microwave breast imaging in women with normal mammography. Acad. Radiol. 2007, 14, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xiao, X.; Wang, L.; Song, H.; Kono, H.; Liu, P.; Lu, H.; Kikkawa, T. Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by UWB. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Leach, M.; Elsdon, M.; Foti, S. Indirect holographic techniques for determining antenna radiation characteristics and imaging aperture fields. IEEE Antennas Propag. Mag. 2007, 49, 54–67. [Google Scholar] [CrossRef]
- Wang, L.; Simpkin, R.; Al-Jumaily, A. Holographic microwave imaging for medical applications. J. Biomed. Sci. Eng. 2013, 6, 823. [Google Scholar] [CrossRef]
- Wang, L.; Al-Jumaily, A.M.; Simpkin, R. Imaging of 3-D dielectric objects using far-field holographic microwave imaging technique. Prog. Electromagn. Res. B 2014, 61, 135–147. [Google Scholar] [CrossRef]
- Wang, L.; Simpkin, R.; Al-Jumaily, A.M. Three-dimensional far-field holographic microwave imaging: An experimental investigation of dielectric object. Prog. Electromagn. Res. B 2014, 61, 169–184. [Google Scholar] [CrossRef]
- Paz, A.V.; Medina, M.A.Y. Holographic Microwave Imaging: Experimental study on spatial distribution of antennas for accurate results. In Proceedings of the IEEE MTT-S Latin America Microwave Conference (LAMC), Puerto Vallarta, Mexico, 12–14 December 2016; pp. 1–3. [Google Scholar]
- Fear, E.C.; Hagness, S.C.; Meaney, P.M.; Okoniewski, M.; Stuchly, M.A. Enhancing breast tumor detection with near-field imaging. IEEE Microw. Mag. 2002, 3, 48–56. [Google Scholar] [CrossRef]
- Saleh, W.; Wright, D.; Slade, P.; Qaddoumi, N. Exploration of breast tumors utilizing noninvasive near-field microwave imaging. In Proceedings of the 2004 Conference on IEEE Precision Electromagnetic Measurements Digest, London, UK, 27 June–2 July 2004; pp. 202–203. [Google Scholar]
- Saleh, W.; Qaddoumi, N. Potential of near-field microwave imaging in breast cancer detection utilizing tapered rectangular waveguide probes. Comput. Electr. Eng. 2009, 35, 587–593. [Google Scholar] [CrossRef]
- Bourqui, J.; Okoniewski, M.; Fear, E.C. Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans. Antennas Propag. 2010, 58, 2318–2326. [Google Scholar] [CrossRef]
- Ravan, M.; Amineh, R.K.; Nikolova, N.K. Two-dimensional near-field microwave holography. Inverse Probl. 2010, 26, 055011. [Google Scholar] [CrossRef]
- Amineh, R.K.; Ravan, M.; Khalatpour, A.; Nikolova, N.K. Three-dimensional near-field microwave holography using reflected and transmitted signals. IEEE Trans. Antennas Propag. 2011, 59, 4777–4789. [Google Scholar] [CrossRef]
- Amineh, R.K.; Ravan, M.; Trehan, A.; Nikolova, N.K. Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Trans. Antennas Propag. 2011, 59, 928–940. [Google Scholar] [CrossRef]
- Rahman, A.; Islam, M.T.; Singh, M.J.; Kibria, S.; Akhtaruzzaman, M. Electromagnetic Performances Analysis of an Ultra-wideband and Flexible Material Antenna in Microwave Breast Imaging: To Implement a Wearable Medical Bra. Sci. Rep. 2016, 6, 38906. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Edalati, A.; McCollough, T.R.; McCollough, W.J. A Phase Confocal Method for Near-Field Microwave Imaging. IEEE Trans. Microw. Theory Tech. 2017, 65, 2508–2515. [Google Scholar] [CrossRef]
- Golnabi, A.H.; Meaney, P.M.; Geimer, S.; Paulsen, K.D. Microwave imaging for breast cancer detection and therapy monitoring. In Proceedings of the 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, USA, 16–19 January 2011; pp. 59–62. [Google Scholar]
- Golnabi, A.H.; Meaney, P.M.; Paulsen, K.D. Tomographic microwave imaging with incorporated prior spatial information. IEEE Trans. Microw. Theory Tech. 2013, 61, 2129–2136. [Google Scholar] [CrossRef]
- Fear, E.C.; Sill, J.; Stuchly, M.A. Experimental feasibility study of confocal microwave imaging for breast tumor detection. IEEE Trans. Microw. Theory Tech. 2003, 51, 887–892. [Google Scholar] [CrossRef]
- Lai, J.C.Y.; Soh, C.B.; Gunawan, E.; Low, K.S. UWB microwave imaging for breast cancer detection—Experiments with heterogeneous breast phantoms. Prog. Electromagn. Res. M 2011, 16, 19–29. [Google Scholar] [CrossRef]
- Jiang, H.; Li, C.; Pearlstone, D.; Fajardo, L.L. Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments. Med. Phys. 2005, 32, 2528–2535. [Google Scholar] [CrossRef] [PubMed]
- Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. Radar-based breast cancer detection using a hemispherical antenna array—Experimental results. IEEE Trans. Antennas Propag. 2009, 57, 1692–1704. [Google Scholar] [CrossRef] [Green Version]
- Klemm, M.; Leendertz, J.A.; Gibbins, D.; Craddock, I.J.; Preece, A.; Benjamin, R. Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios. IEEE Trans. Antennas Propag. 2010, 58, 2337–2344. [Google Scholar] [CrossRef]
- Klemm, M.; Craddock, I.; Leendertz, J.; Preece, A.; Benjamin, R. Experimental and clinical results of breast cancer detection using UWB microwave radar. In Proceedings of the 2008 AP-S IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–12 July 2008; pp. 1–4. [Google Scholar]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popović, M.; Rusch, L.A. Flexible 16 antenna array for microwave breast cancer detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.; Walls, G.; Zhou, Y.; Popovic, M.; Schwartz, J.D. A flexible broadband antenna and transmission line network for a wearable microwave breast cancer detection system. Prog. Electromagn. Res. Lett. 2014, 49, 111–118. [Google Scholar] [CrossRef]
- Afyf, A.; Bellarbi, L.; Riouch, F.; Errachid, A.; Sennouni, M. Flexible Antenna Array for Early Breast Cancer Detection Using Radiometric Technique. Int. J. Biol. Biomed. Eng. 2016, 10, 10–17. [Google Scholar]
- Li, X.; Davis, S.K.; Hagness, S.C.; van der Weide, D.W.; Van Veen, B.D. Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms. IEEE Trans. Microw. Theory Tech. 2004, 52, 1856–1865. [Google Scholar] [CrossRef]
- Baran, A.; Kurrant, D.; Zakaria, A.; Fear, E.; LoVetri, J. Breast cancer imaging using microwave tomography with radar-derived prior information. In Proceedings of the 2014 USNC-URSI. IEEE Radio Science Meeting (Joint with AP-S Symposium), Memphis, TN, USA, 6–11 July 2014; p. 259. [Google Scholar]
- Eleutério, R.; Medina, A.; Conceição, R.C. Initial study with microwave imaging of the axilla to aid breast cancer diagnosis. In Proceedings of the 2014 USNC-URSI IEEE Radio Science Meeting (Joint with AP-S Symposium), Memphis, TN, USA, 6–11 July 2014; p. 306. [Google Scholar]
- Grzegorczyk, T.M.; Meaney, P.M.; Paulsen, K.D. Microwave tomographic imaging for breast cancer chemotherapy monitoring. In Proceedings of the IEEE 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 702–703. [Google Scholar]
- Tivnan, M.; Rappaport, C.; Martinez-Lorenzo, J.A.; Morgenthaler, A. FDFD microwave modeling of realistic, inhomogeneous breast tissue based on digital breast tomosynthesis priors for cancer detection. In Proceedings of the IEEE 2014 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 25–27 April 2014; pp. 1–2. [Google Scholar]
- Obermeier, R.; Juesas, J.H.; Martinez-Lorenzo, J.A. Imaging breast cancer in a hybrid DBT/NRI system using compressive sensing. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 392–393. [Google Scholar]
- Dagheyan, A.G.; Molaei, A.; Obermeier, R.; Martinez-Lorenzo, J. Preliminary imaging results and SAR analysis of a microwave imaging system for early breast cancer detection. In Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, Fl, USA, 16–20 August 2016; pp. 1066–1069. [Google Scholar]
- Dagheyan, A.G. A Near-Field Radar Mechatronics System for Early Detection of Breast Cancer; Northeastern University: Boston, MA, USA, 2016. [Google Scholar]
- Dagheyan, A.G.; Molaei, A.; Obermeier, R.; Martinez, A.K.; Lorenzo, J.M. Near-Field Radar Microwave Imaging as an Add-on Modality to Mammography. In New Perspectives in Breast Imaging; Malik, A., Ed.; InTech: London, UK, 2017; Chapter 2; p. 15. [Google Scholar]
- Fei, P.; Jiao, Y.C.; Hu, W.; Zhang, F.S. A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 127–130. [Google Scholar]
- Bourqui, J.; Okoniewski, M.; Fear, E.C. Balanced antipodal Vivaldi antenna for breast cancer detection. In Proceedings of the EuCAP 2007 The Second European Conference on IET Antennas and Propagation, Edinburgh, UK, 11–16 November 2007; pp. 1–5. [Google Scholar]
- Molaei, A.; Kaboli, M.; Mirtaheri, S.A.; Abrishamian, M.S. Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microw. Antennas Propag. 2014, 8, 1137–1142. [Google Scholar] [CrossRef]
- Molaei, A.; Dagheyan, A.G.; Juesas, J.H.; Martinez-Lorenzo, J. Miniaturized UWB Antipodal Vivaldi Antenna for a mechatronic breast cancer imaging system. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 352–353. [Google Scholar]
- Rappaport, C. Determination of bolus dielectric constant for optimum coupling of microwaves through skin for breast cancer imaging. Int. J. Antennas Propag. 2008, 2008. [Google Scholar] [CrossRef]
- Buchner, R.; Hefter, G.T.; May, P.M. Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 1999, 103, 1–9. [Google Scholar] [CrossRef]
- Sato, T.; Buchner, R. Dielectric relaxation processes in ethanol/water mixtures. J. Phys. Chem. A 2004, 108, 5007–5015. [Google Scholar] [CrossRef]
- Lu, Z.; Manias, E.; Macdonald, D.D.; Lanagan, M. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy. J. Phys. Chem. A 2009, 113, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Markarian, S.; Gabrielyan, L. Dielectric relaxation study of diethylsulfoxide/water mixtures. Phys. Chem. Liq. 2009, 47, 311–321. [Google Scholar] [CrossRef]
- Kavala, A.K. Dielectric relaxation behaviour of glycine in acqueous solution medium in the microwave frequency region. Indian J. Eng. Mater. Sci. 2008, 15, 196–198. [Google Scholar]
- Shinyashiki, N.; Sudo, S.; Abe, W.; Yagihara, S. Shape of dielectric relaxation curves of ethylene glycol oligomer–water mixtures. J. Chem. Phys. 1998, 109, 9843–9847. [Google Scholar] [CrossRef]
- Joshi, Y.; Kumbharkhane, A. Study of dielectric relaxation and hydrogen bonding in water+ 2-butoxyethanol mixtures using TDR technique. Fluid Phase Equilib. 2012, 317, 96–101. [Google Scholar] [CrossRef]
- Kaatze, U. Microwave dielectric properties of liquids. Radiat. Phys. Chem. 1995, 45, 549–566. [Google Scholar] [CrossRef]
- Joshi, Y.; Kumbharkhane, A. Study of heterogeneous interaction in binary mixtures of 2-methoxyethanol-water using dielectric relaxation spectroscopy. J. Mol. Liq. 2011, 161, 120–124. [Google Scholar] [CrossRef]
- Barthel, J.; Bachhuber, K.; Buchner, R.; Hetzenauer, H. Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols. Chem. Phys. Lett. 1990, 165, 369–373. [Google Scholar] [CrossRef]
- Saar, D.; Brauner, J.; Farber, H.; Petrucci, S. Ultrasonic and microwave dielectric relaxation of liquid dialkyl carbonates. J. Phys. Chem. 1978, 82, 2531–2535. [Google Scholar] [CrossRef]
- Tidar, A.; Shafiyoddin, S.; Kamble, S.; Dharne, G.; Patil, S.; Khirade, P.; Mehrotra, S. Microwave dielectric relaxation study of 1-hexanol with 1-propenol mixture by using time domain reflectometry at 300k. In Proceedings of the 2009 IEEE Applied Electromagnetics Conference (AEMC), Kolkata, India, 14–16 December 2009; pp. 1–4. [Google Scholar]
- Saar, D.; Brauner, J.; Farber, H.; Petrucci, S. Microwave dielectric relaxation of some lithium salts in dimethyl carbonate. J. Phys. Chem. 1978, 82, 545–552. [Google Scholar] [CrossRef]
- Undre, P.; Khirade, P.; Rajenimbalkar, V.; Helambe, S.; Mehrotra, S. Dielectric Relaxation in Ethylene Glycol-Dimethyl Sulfoxide Mixtures as a Function of Composition and Temperature. J. Korean Chem. Soc. 2012, 56, 416–423. [Google Scholar] [CrossRef]
- Kumar, S.; Periyasamy, P.; Jeevanandham, P. Dielectric Relaxation Studies of Amides with 2-methoxyethanol and 2-butoxyethanol Using Time Domain Reflectometry Technique. Int. J. Recent Sci. Res. 2012. [Google Scholar] [CrossRef]
- Bindu, G.; Anil, L.; Vinu, T.; Aanandan, C.K.; Mathew, K. Dielectric studies of corn syrup for applications in microwave breast imaging. Prog. Electromagn. Res. 2006, 59, 175–186. [Google Scholar] [CrossRef]
- Dagheyan, A.G.; Molaei, A.; Juesas, J.H.; Martinez-Lorenzo, J. Characterization of Two Antipodal Vivaldi Antennas for Breast Cancer Near-Field Radar Imaging. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Fajardo, PR, USA, 26 June–1 July 2016. [Google Scholar]
- Mathew, T.; Vyas, A.; Tripathi, D. Dielectric properties of some edible and medicinal oils at microwave frequency. Can. J. Pure Appl. Sci. 2009, 3, 953. [Google Scholar]
- Hasgall, P.; Neufeld, E.; Gosselin, M.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. Version 3.0. 1 September 2015. Available online: https://www.itis.ethz.ch/virtual-population/tissue-properties/database/tissue-frequency-chart/ (accessed on 11 November 2016). [CrossRef]
- Federal Communications Commission. Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Federal Communications Commission: Washington, DC, USA, 1997. [Google Scholar]
- European Commission. Implementation Report on the Council Recommendation Limiting the Public Exposure to Electromagnetic Fields (0 Hz to 300 GHz); Public Health, European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Institute of Electrical and Electronics Engineers (IEEE). Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques—Redline; IEEE Std 1528-2013 (Revision of IEEE Std 1528-2003)—Redline; IEEE: New York, NY, USA, 2013; pp. 1–500. [Google Scholar]
- Obermeier, R. Compressed Sensing Algorithms for Electromagnetic Imaging Applications; Northeastern University: Boston, MA, USA, 2016. [Google Scholar]
- Obermeier, R.; Martinez-Lorenzo, J.A. A compressive sensing approach for enhancing breast cancer detection using a hybrid DBT/NRI configuration. J. Electromagn. Waves Appl. 2017, 31, 72–81. [Google Scholar] [CrossRef]
- Tan, D. Modeling the Specific Absorption Rate Distribution of a Smartphone; ANSYS Inc.: Canonsburg, PA, USA, 2012. [Google Scholar]
- Shin, H.J.; Kim, H.H.; Cha, J.H. Current status of automated breast ultrasonography. Ultrasonography 2015, 34, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Erhard, K.; Fredenberg, E.; Homann, H.; Roessl, E. Spectral lesion characterization on a photon-counting mammography system. In Proceedings of the International Society for Optics and Photonics Medical Imaging 2014: Physics of Medical Imaging, Boston, MA, USA, 14–18 September 2014; Volume 9033, p. 90331F. [Google Scholar]
- O’connor, M.K. Molecular breast imaging: An emerging modality for breast cancer screening. Breast Cancer Manag. 2015, 4, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, T.; Joachimowicz, N.; Conessa, C.; Bolomey, J.C. Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system. IEEE Trans. Instrum. Meas. 2010, 59, 2691–2699. [Google Scholar] [CrossRef]
i | |||||
---|---|---|---|---|---|
t | 0 | ||||
f | |||||
a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanbarzadeh Dagheyan, A.; Molaei, A.; Obermeier, R.; Westwood, A.; Martinez, A.; Martinez Lorenzo, J.A. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer. Sensors 2018, 18, 342. https://doi.org/10.3390/s18020342
Ghanbarzadeh Dagheyan A, Molaei A, Obermeier R, Westwood A, Martinez A, Martinez Lorenzo JA. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer. Sensors. 2018; 18(2):342. https://doi.org/10.3390/s18020342
Chicago/Turabian StyleGhanbarzadeh Dagheyan, Ashkan, Ali Molaei, Richard Obermeier, Andrew Westwood, Aida Martinez, and Jose Angel Martinez Lorenzo. 2018. "Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer" Sensors 18, no. 2: 342. https://doi.org/10.3390/s18020342
APA StyleGhanbarzadeh Dagheyan, A., Molaei, A., Obermeier, R., Westwood, A., Martinez, A., & Martinez Lorenzo, J. A. (2018). Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer. Sensors, 18(2), 342. https://doi.org/10.3390/s18020342