Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer
Abstract
:1. Introduction
2. CMUT Design
3. Fabrication
- Paste a PET flexible substrate onto a silicon wafer and sputter a 0.3 µm thick platinum electrode.
- Pattern a 2 µm thick AZ4620 photoresist to protect the sidewall area, followed by soft baking at 95 °C for 2 min.
- Electroform 2 µm thick copper as a sacrificial layer. Remove the AZ4620 photoresist.
- Pattern a SU-8 2002 photoresist to form a sidewall and vibrating membrane. Perform a soft bake at 65 °C for 4 min and 95 °C for 4 min, and then post exposure bake at 65 °C for 2 min and 95 °C for 3 min.
- Develop the SU-8 2002 photoresist to yield etching holes. Perform a hard bake at 95 °C for 5 min.
- Deposit 0.3 µm thick gold to yield the top electrode layer.
- Pattern-etch the top electrode using the AZ4620 photoresist and potassium iodine.
- Remove the copper sacrificial layer to release the vibrating membranes and cavities.
- Remove the silicon wafer to complete the CMUT fabrication.
- Paste a 125 µm thick ITO-PET substrate onto a silicon wafer.
- Spin coat a 2 µm thick SU-8 2002 photoresist onto the ITO-PET substrate, followed by soft bake at 65 °C for 3 min, 95 °C for 3 min, and then 65 °C for 3 min.
- Pattern the SU-8 2002 photoresist to form a sidewall. Perform a post exposure bake at 65 °C for 3 min, 95 °C for 3 min, and 65 °C for 3 min, and then hard bake at 65 °C for 2 min, 95 °C for 4 min, and 65 °C for 2 min.
- Prepare a 4 µm thick SU-8 2002 photoresist on a PET release layer, followed by soft bake at 65 °C for 3 min and then 95 °C for 2 min.
- Roll-laminate the PET release layer containing the SU-8 2002 photoresist as vibrating membranes onto the sidewall at an average pressure of 0.35 MPa.
- Expose the SU-8 2002 photoresist on the PET release layer, followed by post exposure bake at 65 °C for 1 min, 95 °C for 1 min, and 65 °C for 1 min. Remove the PET release layer and develop the vibrating membranes.
- Prepare a 0.2 µm thick transparent silver nanowire electrode through dip coating.
- Spin coat a 1 µm thick SU-8 2002 photoresist onto the vibrating membranes, followed by soft bake at 65 °C for 2 min, 95 °C for 2 min, and then 65 °C for 2 min. Pattern the SU-8 2002 photoresist to form a protect layer. Perform a post exposure bake at 65 °C for 2 min, 95 °C for 2 min, and 65 °C for 2 min, and hard bake at 65 °C for 2 min, 95 °C for 3 min, and 65 °C for 2 min.
- Remove the silicon wafer to complete the transparent CMUT fabrication.
4. Discussion
4.1. Roll-Lamination Fabrication
4.2. Transparent Electrodes
4.3. Membrane Swelling
5. CMUT Characteristics Measurement
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hohm, D.; Hess, G. A subminiature condenser microphone with silicon-nitride membrane and silicon backplate. J. Acoust. Soc. Am. 1989, 85, 476–480. [Google Scholar] [CrossRef]
- Suzuki, K.; Higuchi, K.; Tanigawa, H. A silicon electrostatic ultrasonic transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.; Wykes, C. The performance of capacitive ultrasonic transducers using v-grooved backplates. Meas. Sci. Technol. 1991, 2, 168–174. [Google Scholar] [CrossRef]
- Haller, M.I.; Khuri-Yakub, B.T. A surface micromachined electrostatic ultrasonic air transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1–6. [Google Scholar] [CrossRef]
- Jin, X.; Ladabaum, I.; Khuri-Yakub, B.T. The Microfabrication of Capacitive Ultrasonic Transducers. J. Microelectromech. Syst. 1998, 7, 295–302. [Google Scholar]
- Ladabaum, I.; Khuri-Yakub, B.T.; Spoliansky, D.; Haller, M.I. Micromachined ultrasonic transducers (MUTs). In Proceedings of the 1995 IEEE Ultrasonics Symposium, Seattle, WA, USA, 7–10 November 1995; pp. 501–504. [Google Scholar]
- Jin, X.; Ladabaum, I.; Degertekin, F.; Calmes, S.; Khuri-Yakub, B.T. Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers. J. Microelectromech. Syst. 1999, 8, 100–114. [Google Scholar]
- Calmes, S.; Cheng, C.; Degertekin, F.L.; Jin, X.C.; Ergun, A.S.; Khuri-Yakub, B.T. Highly integrated 2-D capacitive micromachined ultrasonic transducers. In Proceedings of the 1999 IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA, 17–20 October 1999; pp. 1163–1166. [Google Scholar]
- Oralkan, Ö.; Ergun, A.S.; Cheng, C.H.; Johnson, J.A.; Karaman, M.; Lee, T.H.; Khuri-Yakub, B.T. Volumetric ultrasound imaging using 2-D cMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1581–1594. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ergun, A.S.; Hægstr¨om, E.; Badi, M.H.; Khuri-Yakub, B.T. Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology. J. Microelectromech. Syst. 2003, 12, 128–137. [Google Scholar] [CrossRef]
- Ergun, A.S.; Huang, Y.; Zhuang, X.; Oralkan, Ö.; Yarahoglu, G.G.; Khuri-Yakub, B.T. Capacitive micromachined ultrasonic transducers: Fabrication technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2242–2258. [Google Scholar] [PubMed]
- Logan, A.S.; Yeow, J.T. 1-D CMUT arrays fabricated using a novel wafer bonding process. In Proceedings of the IEEE Ultrasonics Symposium (IUS 2008), Beijing, China, 2–5 November 2008; pp. 1226–1229. [Google Scholar]
- Zhuang, X.; Wygant, I.O.; Lin, D.S.; Kupnik, M.; Oralkan, Ö.; Khuri-Yakub, B.T. Wafer-bonded 2-D CMUT arrays incorporating through-wafer trench-isolated interconnects with a supporting frame. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Olcum, S.; Oğuz, K.; Yamaner, F.Y.; Bozkurt, A.; Atalar, A.; Köymen, H. Wafer bonded capacitive micromachined underwater transducers. In Proceedings of the 2009 IEEE International Ultrasonics Symposium (IUS), Rome, Italy, 20–23 September 2009; pp. 976–979. [Google Scholar]
- Park, K.K.; Lee, H.; Kupnik, M.; Khuri-Yakub, B.T. Fabrication of capacitive micromachined ultrasonic transducers via local oxidation and direct wafer bonding. J. Microelectromech. Syst. 2011, 20, 95–103. [Google Scholar] [CrossRef]
- Logan, A.S.; Wong, L.L.; Yeow, J.T. A 1-D capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process. IEEE/ASME Trans. Mechatron. 2011, 16, 861–865. [Google Scholar] [CrossRef]
- Lee, B.C.; Nikoozadeh, A.; Park, K.K.; Khuri-Yakub, B.T. Non-flexural parallel piston movement across CMUT with substrate-embedded springs. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 591–594. [Google Scholar]
- Gross, D.; Perroteau, M.; Certon, D.; Coutier, C.; Legros, M. Fabrication and characterization of wafer-bonded cMUT arrays dedicated to ultrasound-image-guided FUS. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 181–184. [Google Scholar]
- Chen, J.; Wang, M.; Cheng, J.C.; Wang, Y.H.; Li, P.C.; Cheng, X. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2012, 59, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.W.; Dong, T.M.; Gwo, T.J.; Mai, J.D.; Hsu, E. Polymer-based Capacitive Micromachined Ultrasonic Transducers (CMIT) for Micro Surgical Imaging Applications. In Proceedings of the 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 18–21 January 2006; pp. 61–65. [Google Scholar]
- Chang, M.W.; Deng, H.C.; Pang, D.C.; Chen, M.Y. 6F-6 A Novel Method for Fabricating Sonic Paper. In Proceedings of the 2007 IEEE Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 527–530. [Google Scholar]
- Wong, K.A.; Panda, S.; Ladabaum, I. Curved micromachined ultrasonic transducers. In Proceedings of the 2003 IEEE Symposium on Ultrasonics, Honolulu, HI, USA, 5–8 October 2003; pp. 572–576. [Google Scholar]
- Zhuang, X.; Lin, D.S.; Oralkan, O.; Khuri-Yakub, B.T. Fabrication of flexible transducer arrays with through-wafer electrical interconnects based on trench refilling with PDMS. J. Microelectromech. Syst. 2008, 17, 446–452. [Google Scholar] [CrossRef]
- Abgrall, P.; Charlot, S.; Fulcrand, R.; Paul, L.; Boukabache, A.; Gué, M.A. Low-stress fabrication of 3D polymer free standing structures using lamination of photosensitive films. Microsyst. Technol. 2008, 14, 1205–1214. [Google Scholar] [CrossRef]
- Shi, X.; Cheng, C.H.; Peng, J. A novel stretchable CMUT array using liquid-metal electrodes on a PDMS substrate. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kyoto, Japan, 5–8 March 2012; pp. 104–107. [Google Scholar]
- Li, Z.; Chen, A.I.; Wong, L.L.; Na, S.; Yeow, J.T. Fabrication of polymer-based wafer-bonded capacitive micromachined ultrasonic transducers. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Bui, G.T.; Chen, Y.Z.; Pang, D.C. Polymer-Based Capacity Micromachined Ultrasonic Transducer for Surface Roughness Measurement. Key Eng. Mater. 2015, 661, 22–28. [Google Scholar] [CrossRef]
- Leterrier, Y.; Medico, L.; Demarco, F.; Månson, J.A.; Betz, U.; Escola, M.F.; Atamny, F. Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 2004, 460, 156–166. [Google Scholar] [CrossRef]
- Yu, Z.; Xiang, L.; Xue, W.; Wang, H. The bending properties of flexible ITO films. In Proceedings of the 2007 Asia Optical Fiber Communication and Optoelectronics Conference, Shanghai, China, 17–19 October 2007; pp. 148–150. [Google Scholar]
- Alzoubi, K.; Hamasha, M.M.; Lu, S.; Sammakia, B. Bending fatigue study of sputtered ITO on flexible substrate. J. Disp. Technol. 2011, 7, 593–600. [Google Scholar] [CrossRef]
- Li, T.C.; Han, C.F.; Chen, K.T.; Lin, J.F. Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain Via Cyclic Bending Tests. J. Disp. Technol. 2013, 9, 577–585. [Google Scholar] [CrossRef]
- Ni, J.L.; Zhu, X.F.; Pei, Z.L.; Gong, J.; Sun, C.; Zhang, G.P. Comparative investigation of fracture behaviour of aluminium-doped ZnO films on a flexible substrate. J. Phys. D: Appl. Phys. 2009, 42, 175404. [Google Scholar] [CrossRef]
- Peng, C.Y.; Sudarsanam, H.; Hamasha, M.M.; Lu, S.; Dhakal, T.P.; Westgate, C.R. Performance of aluminum-doped zinc oxide thin films under bending fatigue conditions. In Proceedings of the 2012 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 4 May 2012; pp. 1–6. [Google Scholar]
- Peng, C.Y.; Hamasha, M.M.; VanHart, D.; Lu, S.; Westgate, C.R. Electrical and optical degradation studies on AZO thin films under cyclic bending conditions. IEEE Trans. Device Mater. Reliab. 2013, 13, 236–244. [Google Scholar] [CrossRef]
- De, S.; Higgins, T.M.; Lyons, P.E.; Doherty, E.M.; Nirmalraj, P.N.; Blau, W.J.; Coleman, J.N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Wouters, K.; Puers, R. Diffusing and swelling in SU-8: Insight in material properties and processing. J. Micromech. Microeng. 2010, 20, 095013. [Google Scholar] [CrossRef]
Membrane diameter | A | 140 µm | Membrane thickness | D | 5 µm |
Silver nanowire (SNW) electrode diameter | B | 160 µm | SNW electrode thickness | E | 0.2 µm |
Sidewall height | F | 2 µm | Sidewall width | C | 10 µm |
Indium Tin Oxide (ITO) electrode thickness | G | 0.2 µm | Polyethylene terephthalate (PET) thickness | H | 125 µm |
Gold | ITO | AZO | SNW | |
---|---|---|---|---|
Thickness (nm) | ~150 | ~200 | ~200 | ~200 |
Sheet resistance (Ω/sq) | 10–60 | 160–200 | 230–270 | 10–60 |
Transmittance (%) | 39.4 | 83.2 | 84.1 | 84.2 |
Color | Gold | Transparent | Transparent | Transparent |
Flexibility | Good | OK | OK | Good |
Ultrasound Application | Good | Damaged | Damaged | Good |
Mounted Surface | Target Object | Reflection Signal at 10 mm (mV) | Maximum Detection Distance (mm) |
---|---|---|---|
Flat | Flat | 888 | 70 |
Flat | Finger | 624 | 50 |
Curved | Flat | 762 | 50 |
Curved | Finger | 506 | 40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, D.-C.; Chang, C.-M. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer. Sensors 2017, 17, 1443. https://doi.org/10.3390/s17061443
Pang D-C, Chang C-M. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer. Sensors. 2017; 17(6):1443. https://doi.org/10.3390/s17061443
Chicago/Turabian StylePang, Da-Chen, and Cheng-Min Chang. 2017. "Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer" Sensors 17, no. 6: 1443. https://doi.org/10.3390/s17061443
APA StylePang, D.-C., & Chang, C.-M. (2017). Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer. Sensors, 17(6), 1443. https://doi.org/10.3390/s17061443