Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array
Abstract
:1. Introduction
2. Signal Model
2.1. Partly-Calibrated Array Model
2.2. Khatri–Rao Product Subspace
3. The Proposed Method
3.1. Joint Parameters Estimation
3.2. The Proposed RD Method
4. Condition for Unique Identification and Computational Complexity
5. Simulation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
References
- Van Trees, H.L. Detection, Estimation and Modulation Theory: Optimal Array Processing; Wiely: New York, NY, USA, 2002. [Google Scholar]
- Ziskind, I.; Wax, M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1553–1560. [Google Scholar] [CrossRef]
- Vorobyov, S.; Gershman, A.; Wong, K.M. Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays. IEEE Trans. Signal Process. 2005, 53, 34–43. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Capon, J. High-solution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Gu, Y.; Leshem, A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3885. [Google Scholar]
- Gu, Y.; Goodman, N.A.; Hong, S.; Li, Y. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 2014, 96, 375–381. [Google Scholar] [CrossRef]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 37, 276–280. [Google Scholar] [CrossRef]
- Rao, B.; Hari, K. Performance analysis of root-MUSIC. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1939–1949. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Cao, R.; Zhou, M. Reduced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar. IEEE Commun. Lett. 2013, 17, 443–446. [Google Scholar] [CrossRef]
- Roy, R.; Paulraj, A.; Kailath, T. ESPRIT–A subspace rotation approach to estimation of parameters of Cisoids in noise. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation. Electron. Lett. 2011, 47, 283–284. [Google Scholar] [CrossRef]
- Devaney, A.J.; Marengo, E.A.; Gruber, F.K. Time-reversal-based imaging and inverse scattering of multiply scattering point targets. J. Acoust. Soc. Am. 2005, 118, 3129–3138. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Romano, G.; Solimene, R. On MSE performance of time-reversal MUSIC. In Proceedings of the 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruña, Spain, 22–25 June 2014; pp. 13–16. [Google Scholar]
- Ciuonzo, D.; Romano, G.; Solimene, R. Performance analysis of time-reversal MUSIC. IEEE Trans. Signal Process. 2015, 63, 2650–2662. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Romano, G.; Solimene, R. Non-colocated time-reversal MUSIC: High-SNR distribution of null spectrum. IEEE Signal Process. Lett. 2017, 24, 397–401. [Google Scholar] [CrossRef]
- Massa, A.; Donelli, M.; Viani, F.; Rocca, P. An innovative multiresolution approach for DOA estimation based on a support vector classification. IEEE Trans. Antennas Propag. 2009, 57, 2279–2292. [Google Scholar]
- Malioutov, D.; Çetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transa. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef]
- Friedlander, B.; Weiss, A. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New York, NY, USA, 11–14 April 1988; pp. 2681–2684. [Google Scholar]
- Friedlander, B.; Weiss, A. Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 1991, 39, 273–284. [Google Scholar] [CrossRef]
- Fuhrmann, D. Estimation of sensor gain and phase. IEEE Trans. Signal Process. 1994, 42, 77–87. [Google Scholar] [CrossRef]
- NG, B.C.; See, C.M.S. Sensor-array calibration using a maximum-likelihood approach. IEEE Trans. Antennas Propag. 1996, 44, 827–835. [Google Scholar]
- Willerton, M.; Manikas, A. Array shape calibration using a single multi-carrier pilot. In Proceedings of the Sensor Signal Processing for Defense (SSPD), London, UK, 27–29 September 2011; pp. 1–6. [Google Scholar]
- Willerton, M. Array Auto-Calibration. Ph.D. Thesis, Imperial College London, London, UK, 2013. [Google Scholar]
- Soon, C.; Tong, L.; Huang, Y.F.; Liu, R. A subspace method fo estimating sensor gains and phases. IEEE Trans. Signal Process. 1994, 42, 973–976. [Google Scholar] [CrossRef]
- Willerton, M.; Venieris, E.; Manikas, A. Array uncertainties and auto-calibration. In Beamforming: Sensor Signal Processing for Defence Applications; Manikas, A., Ed.; Imperial College Press: London, UK, 2015; pp. 221–262. [Google Scholar]
- Weiss, A.; Friedlander, B. DOA and steering vector estimation using a partially calibrated array. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1047–1057. [Google Scholar] [CrossRef]
- Liao, B.; Chan, S.C. Direction finding with partly calibrated uniform linear arrays. IEEE Trans. Antennas Propag. 2012, 60, 922–929. [Google Scholar] [CrossRef]
- See, C.M.S.; Gershman, A.B. Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Trans. Signal Process. 2004, 52, 329–338. [Google Scholar] [CrossRef]
- Inghelbrecht, V.; Verhaevert, J.; Van Hecke, T.; Rogier, H. The influence of random element displacement on DOA estimates obtained with (Khatri–Rao-) root-MUSIC. Sensors 2014, 14, 21258–21280. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, P.; Albera, L.; Ferreol, A.; Comon, P. On the virtual array concept for higher order array processing. IEEE Trans. Signal Process. 2005, 53, 1254–1271. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, C.; Gu, Y.; Goodman, N.A.; Qu, F. Source estimation using coprime array: A sparse reconstruction perspective. IEEE Sens. J. 2017, 17, 755–765. [Google Scholar] [CrossRef]
- Zhao, L.; Song, W.-Z.; Ye, X.; Gu, Y. Asynchronous broadcast-based decentralized learning in sensor networks. Int. J. Parallel Emerg. Distrib. Syst. 2017, 32, 1–19. [Google Scholar]
- Ma, W.K.; Hsieh, T.H.; Chi, C.Y. DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri–Rao subspace approach. IEEE Trans. Signal Process. 2010, 58, 1047–1057. [Google Scholar] [CrossRef]
- Cao, M.Y.; Huang, L.; Qian, C.; Xue, J.Y.; So, H.C. Underdetermined DOA estimation of quasi-stationary signals via Khatri-Rao structure for uniform circular array. Signal Process. 2015, 106, 41–48. [Google Scholar] [CrossRef]
- Zhao, S.; Saluev, T.; Jones, D.L. Underdetermined direction of arrival estimation using acoustic vector sensor. Signal Process. 2014, 100, 160–168. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–985. [Google Scholar] [CrossRef]
- Cox, H.; Zeskind, R.M.; Owen, M.H. Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1365–1376. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. Robust Adaptive Beamforming; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Magnus, J.R.; Neudecker, H. Mathematical preliminaries. In Matrix Differential Calculus with Applications in Statistics and Econometrics, 2nd ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Guo, Y.D.; Guo, Y.S.; Tong, N.N. ESPRIT-like angle estimation for bistatic MIMO radar with gain and phase uncertainties. Electron. Lett. 2011, 47, 996–997. [Google Scholar] [CrossRef]
Method | SVD Operation | Gain-Phase Error Estimation | EVD for DOA Estimation |
---|---|---|---|
Proposed method | |||
Proposed RD method |
(a) Gain Estimation Results | (b) Phase Estimation Results (Radian) | ||||||
---|---|---|---|---|---|---|---|
Index | True Value | Mean | STD | Index | True Value | Mean | STD |
0.8000 | 0.8056 | 0.0049 | 0.6283 | 0.6286 | 0.0055 | ||
1.2500 | 1.2510 | 0.0085 | −1.0472 | −1.0473 | 0.0061 | ||
1.5300 | 1.5344 | 0.0118 | −0.6283 | −0.6284 | 0.0074 | ||
0.7500 | 0.7608 | 0.0077 | 0.7854 | 0.7855 | 0.0092 | ||
1.3600 | 1.3700 | 0.0164 | −1.0472 | −1.0481 | 0.0099 |
(a) Gain Estimation Results | (b) Phase Estimation Results (Radian) | ||||||
---|---|---|---|---|---|---|---|
Index | True Value | Mean | STD | Index | True Value | Mean | STD |
1.2000 | 1.1990 | 0.0138 | 0.7853 | 0.7836 | 0.0093 | ||
0.8600 | 0.8749 | 0.0267 | −0.5236 | −0.5269 | 0.0123 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, W.; Gu, Y.; Lei, S. Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array. Sensors 2017, 17, 702. https://doi.org/10.3390/s17040702
Wang B, Wang W, Gu Y, Lei S. Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array. Sensors. 2017; 17(4):702. https://doi.org/10.3390/s17040702
Chicago/Turabian StyleWang, Ben, Wei Wang, Yujie Gu, and Shujie Lei. 2017. "Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array" Sensors 17, no. 4: 702. https://doi.org/10.3390/s17040702
APA StyleWang, B., Wang, W., Gu, Y., & Lei, S. (2017). Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array. Sensors, 17(4), 702. https://doi.org/10.3390/s17040702