Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Correcting Organic Matter Effect on Sensor Readings
2.3. Statistical Analysis
3. Results and Discussion
3.1. Sensor Readings (Raw Counts)
3.2. Sensor Precision and Accuracy
3.3. Correcting Effect of Organic Matter on Sensor Readings
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Manns, H.R.; Berg, A.A. Importance of soil organic carbon on surface soil water content variability among agricultural fields. J. Hydrol. 2014, 516, 297–303. [Google Scholar]
- Polyakov, V.; Fares, A.; Ryder, M.H. Calibration of a Capacitance System for Measuring Water Content of Tropical Soil. Vadose Zone J. 2005, 4. [Google Scholar] [CrossRef]
- Provenzano, G.; Rallo, G.; Ghazouani, H. Assessing field and laboratory calibration protocols for the diviner 2000 probe in a range of soils with different textures. J. Irrig. Drain. Eng. 2015, 142. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Jones, S.; Meding, M.; Tuller, M. Evaluation of Standard Calibration Functions for Eight Electromagnetic Soil Moisture Sensors. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Corradini, C. Soil moisture in the development of hydrological processes and its determination at different spatial scales. J. Hydrol. 2014, 516, 1–5. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose. Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Bissey, L.L. Calibration and Evaluation of an Improved Low-Cost Soil Moisture Sensor. Available online: https://www. decagon.com (accessed on 3 November 2015).
- Fares, A.; Hamdhani, H.; Jenkins, D.M. Temperature-Dependent Scaled Frequency: Improved Accuracy of Multisensor Capacitance Probes. Soil Sci. Soc. Am. 2007, 71, 894–900. [Google Scholar] [CrossRef]
- Susha-Lekshmi, S.U.; Singh, D.N.; Baghini, M.S. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar]
- Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar]
- Cardenas-Lailhacar, B.; Dukes, M. Effect of Temperature and Salinity on the Precision and Accuracy of Landscape Irrigation Soil Moisture Sensor Systems. J. Irrig. Drain. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Fares, A.; Buss, P.; Dalton, M.; El-Kadi, A.I.; Parsons, L.R. Dual field calibration of capacitance and neutron soil water sensors in a shrinking-swelling clay soil. Vadose. Zone J. 2004, 3, 1390–1399. [Google Scholar]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of four soil moisture sensor types under field conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [Google Scholar] [CrossRef]
- Parvin, N.; Degré, A. Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Res. 2016, 54, 111–119. [Google Scholar] [CrossRef]
- Nemali, K.S.; Montesano, F.; Dove, S.K.; van Iersel, M.W. Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Sci. Hortic. 2007, 112, 227–234. [Google Scholar] [CrossRef]
- Inoue, M.; Ould Ahmed, B.A.; Saito, T.; Irshad, M.; Uzoma, K.C. Comparison of three dielectric moisture sensors for measurement of water in saline sandy soil. Soil Use Manag. 2008, 24, 156–162. [Google Scholar] [CrossRef]
- Fares, A.; Abbas, F.; Maria, D.; Mair, A. Improved Calibration Functions of Three Capacitance Probes for the Measurement of Soil Moisture in Tropical Soils. Sensors 2011, 11, 4858–4874. [Google Scholar] [CrossRef] [PubMed]
- Baumhardt, R.L.; Lascano, R.J.; Evett, S.R. Soil material, temperature, and salinity effects on calibration of multisensor capacitance probes. Soil Sci. Soc. Am. J. 2000, 64, 1940–1946. [Google Scholar] [CrossRef]
- Kargas, G.; Ntoulas, N.; Nektarios, P. Soil texture and salinity effects on calibration of TDR300 dielectric moisture sensor. Soil Res. 2013, 51, 330–340. [Google Scholar] [CrossRef]
- Spelman, D.; Kinzli, K.-D.; Kunberger, T. Calibration of the 10HS Soil Moisture Sensor for Southwest Florida Agricultural Soils. J. Irrig. Drain. Eng. 2013, 139, 965–971. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Dexter, A.; Richard, G.; Arrouays, D.; Czyz, E.A.; Jolivet, C.; Duval, O. Complexed organic matter controls soil physical properties. Geoderma 2008, 144, 620–627. [Google Scholar] [CrossRef]
- Fares, A.; Abbas, F.; Ahmad, A.; Deenik, J.L.; Safeeq, M. Response of selected soil physical and hydrologic properties to manure amendment rates, levels, and types. Soil Sci. 2008, 173, 522–533. [Google Scholar] [CrossRef]
- Eusufzai, M.; Fujii, K. Effect of Organic Matter Amendment on Hydraulic and Pore Characteristics of a Clay Loam Soil. Open J. Soil Sci. 2012, 2, 372–381. [Google Scholar] [CrossRef]
- Cobos, D. Measurement Volume of Decagon Volumetric Water Content Sensors. Available online: http://manuals.decagon.com/Application%20Notes/14955_VWC%20Sensor%20Measurement%20Volumes_Web.pdf (accessed on 3 March 2016).
- Fares, A.; Awal, R.; Fares, S.; Johnson, A.B.; Valenzuela, H. Irrigation water requirements for seed corn and coffee under potential climate change scenarios. J. Water Clim. Chang. 2015, 7, 39–51. [Google Scholar] [CrossRef]
- Fares, A.; Safeeq, M.; Jenkins, D.M. Adjusting Temperature and Salinity Effects on Single Capacitance Sensors. Pedosphere 2009, 19, 588–596. [Google Scholar] [CrossRef]
- Plauborg, F.; Iversen, B.V.; Lærke, P.E. In Situ Comparison of Three Dielectric Soil Moisture Sensors in Drip Irrigated Sandy Soils. Vadose Zone J. 2005, 4, 1037–1047. [Google Scholar] [CrossRef]
- Wu, B.; Han, H.; He, J.; Zhang, J.; Cui, L.; Jia, Z.; Yang, W. Field-Specific Calibration and Evaluation of ECHO EC-5 Sensor for Sandy Soils. Soil Sci. Soc. Am. J. 2014, 78. [Google Scholar] [CrossRef]
- Decagon Devices product manual. 10HS Soil Moisture Sensor; Decagon Devices. Inc.: Pullman, WA, USA, 2016; Available online: http://manuals.decagon.com/Manuals/13508_10HS_Web.pdf (accessed on 24 July 2016).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Kargas, G.; Soulis, K. Performance Analysis and Calibration of a New Low-Cost Capacitance Soil Moisture Sensor. J. Irrig. Drain. Eng. 2012, 138, 632–641. [Google Scholar] [CrossRef]
- Romano, N. Soil moisture at local scale: Measurements and simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Fares, A.; Safeeq, M.; Awal, R.; Fares, S.; Dogan, A. Effect of Temperature Hysteresis and Intra-Sensor Variability on Single Capacitance Soil Moisture Sensors in an Oxisol. Vadose. Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Schwank, M.; Green, T.R. Simulated effects of soil temperature and salinity on capacitance sensor measurements. Sensors 2007, 7, 548–577. [Google Scholar] [CrossRef]
- Kinzli, K.-D.; Manana, N.; Oad, R. Comparison of laboratory and field calibration of a soil-moisture capacitance probe for various soils. J. Irrig. Drain. Eng. 2011, 138, 310–321. [Google Scholar] [CrossRef]
Source of Variation | df | Sum of Squares | Mean Squares | F | p-Value |
---|---|---|---|---|---|
OM | 7 | 91,523.4 | 13,075.0 | 17,038.0 | <0.001 |
ST | 2 | 101,709.0 | 50,854.0 | 66,269.5 | <0.001 |
WC | 7 | 27,650,000.0 | 3,950,152.0 | 5,147,527.0 | <0.001 |
OM × ST | 14 | 6782.9 | 484.0 | 631.4 | <0.001 |
OM × WC | 49 | 107,498.0 | 2194.0 | 2858.8 | <0.001 |
ST × WC | 14 | 30,686.4 | 2192.0 | 2856.3 | <0.001 |
OM × ST × WC | 98 | 48,748.0 | 497.0 | 648.2 | <0.001 |
Error | 382 | 293.1 | 1 | ||
Total | 575 | 28,040,000.0 |
Organic Matter Level (% v/v) | Organic-Matter-Level-Specific Calibration Equation | Organic-Matter-Level-Specific Calibration | Default Calibration | |||
---|---|---|---|---|---|---|
(×10−7) | (×10−4) | (×10−2) | R² | RMSE (cm3 cm−3) | RMSE (cm3 cm−3) | |
0 | 3.67 × RC2 − 2.69 × RC + 2 | 0.98 | 0.015 | 0.072 | ||
2 | 5.26 × RC2 − 5.60 × RC + 15 | 0.98 | 0.013 | 0.070 | ||
4 | 4.14 × RC2 − 3.60 × RC + 7 | 0.97 | 0.019 | 0.070 | ||
6 | 3.74 × RC2 − 2.64 × RC + 2 | 0.96 | 0.019 | 0.067 | ||
8 | 2.54 × RC2 − 0.32 × RC − 8 | 0.98 | 0.016 | 0.060 | ||
10 | 1.63 × RC2 + 1.41 × RC − 16 | 0.98 | 0.014 | 0.057 | ||
12 | 2.24 × RC2 + 0.15 × RC − 10 | 0.98 | 0.014 | 0.061 | ||
18 | 1.51 × RC2 + 1.68 × RC − 17 | 0.99 | 0.013 | 0.053 |
Mean Absolute Error (MAE, cm3 cm−3) | |||
---|---|---|---|
Organic Matter Level (% v/v) | Default Calibration | Organic-Matter-Level-Specific Calibration Equation (RC) | Multivariate Polynomial Equation (RC and OM) |
0 | 0.059 | 0.012 | 0.011 |
2 | 0.060 | 0.010 | 0.010 |
4 | 0.057 | 0.015 | 0.011 |
6 | 0.055 | 0.014 | 0.012 |
8 | 0.049 | 0.012 | 0.010 |
10 | 0.049 | 0.010 | 0.009 |
12 | 0.053 | 0.011 | 0.010 |
18 | 0.047 | 0.010 | 0.008 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fares, A.; Awal, R.; Bayabil, H.K. Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions. Sensors 2016, 16, 1239. https://doi.org/10.3390/s16081239
Fares A, Awal R, Bayabil HK. Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions. Sensors. 2016; 16(8):1239. https://doi.org/10.3390/s16081239
Chicago/Turabian StyleFares, Ali, Ripendra Awal, and Haimanote K. Bayabil. 2016. "Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions" Sensors 16, no. 8: 1239. https://doi.org/10.3390/s16081239
APA StyleFares, A., Awal, R., & Bayabil, H. K. (2016). Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions. Sensors, 16(8), 1239. https://doi.org/10.3390/s16081239