A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials and Experimental Setup
2.2. Data Collection
2.3. Original Feature Matrix
3. SLPP
- (1)
- Constructing the neighborhood: becomes the neighbor of only if they are from the same class and are “close”, where both and are the points of X and . Additionally, two different ways can be employed to find the neighborhood of .
- (a)
- -neighborhood: if , then can be taken as the neighbor of .
- (b)
- k-nearest-neighbors: a judgment is made on whether is among the k-nearest neighbors of .
- (2)
- Describe the relationship between and : suppose that is a variable describing the relationship between these two points, and will be “larger” if and are “closer”. There are also two different methods available to realize it.
- (a)
- simple-type: if is the neighbor of ; otherwise, .
- (b)
- heat-kernel:
- (3)
- Find the map: to make the relationship between and similar to that between and ; let Y be a “good” map to minimize the following objective function [27].
4. Results and Discussion
4.1. Experimental Results
4.2. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bicego, M.; Tessari, G.; Tecchiolli, G.; Bettinelli, M. A comparative analysis of basic pattern recognition techniques for the development of small size electronic nose. Sens. Actuator B Chem. 2002, 85, 137–144. [Google Scholar] [CrossRef]
- Ciosek, P.; Wróblewski, W. The analysis of sensor array data with various pattern recognition techniques. Sens. Actuator B Chem. 2006, 114, 85–93. [Google Scholar] [CrossRef]
- Yu, J.B.; Byun, H.G.; So, M.S.; Huh, G.S. Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens. Actuator B Chem. 2005, 108, 305–308. [Google Scholar] [CrossRef]
- Pavlou, A.K.; Magan, N.; McNulty, C.; Jones, J.M.; Sharp, D.; Brown, J.; Turner, A.P. Use of an electronic nose system for diagnoses of urinary tract infections. Biosens. Bioelectron. 2002, 17, 893–899. [Google Scholar] [CrossRef]
- Anh, D.T.V.; Olthuis, W.; Bergveld, P. A hydrogen peroxide sensor for exhaled breath measurement. Sens. Actuator B Chem. 2005, 111–112, 494–499. [Google Scholar] [CrossRef]
- Trihaas, J.; Nielsen, P.V. Electronic nose technology in quality assessment: monitoring the ripening process of danish blue cheese. J. Food Sci. 2005, 70, 44–49. [Google Scholar]
- Natale, C.D.; Macagnano, A.; Davide, F.; D’Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. An electronic nose for food analysis. Sens. Actuator B Chem. 1997, 44, 521–526. [Google Scholar] [CrossRef]
- Dutta, R.; Dutta, R. “Maximum probability rule” based classification of MRSA infections in hospital environment: Using electronic nose. Sens. Actuator B Chem. 2006, 120, 156–165. [Google Scholar] [CrossRef]
- Thomas, A.N.; Riazanskaia, S.; Cheung, W.; Xu, Y.; Goodacre, R.; Thomas, C.L.P.; Baguneid, M.S.; Bayat, A. Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair Regen. 2010, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.; Persaud, K.C.; Pisanelli, A.M. Wound-state monitoring for burn patients using E-nose/SPME system. ETRI J. 2010, 32, 440–446. [Google Scholar] [CrossRef]
- Jia, P.; Tian, F.; He, Q.; Fan, S.; Liu, J.; Yang, S.X. Feature extraction of wound infection data for electronic nose based on a novel weighted KPCA. Sens. Actuator B Chem. 2014, 201, 555–566. [Google Scholar] [CrossRef]
- Goldberg, Y.; Zakai, A.; Kushnir, D.; Ritov, Y. Manifold learning: The price of normalization. J. Mach. Learn. Res. 2008, 9, 1909–1939. [Google Scholar]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, J.B.; Silva, V.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, H.; Barrio, R.; Liao, X.; Cheng, L.; Su, F. Incremental manifold learning by spectral embedding methods. Pattern Recognit. Lett. 2011, 32, 1447–1455. [Google Scholar] [CrossRef]
- Chatpatanasiri, R.; Kijsirikul, B. A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing 2010, 73, 1631–1640. [Google Scholar] [CrossRef]
- Shen, J.; Bu, J.; Ju, B.; Jiang, T.; Wu, H.; Li, L. Refining gaussian mixture model based on enhanced manifold learning. Neurocomputing 2012, 87, 19–25. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Z.; Ma, Z.; Huang, Z. Image classification with manifold learning for out-of-sample data. Signal Process. 2012, 93, 2169–2177. [Google Scholar] [CrossRef]
- Cheon, Y.; Kim, D. Natural facial expression recognition using differential-AAM and manifold learning. Pattern Recognit. 2009, 42, 1340–1350. [Google Scholar] [CrossRef]
- Hadid, A.; Pietikäinen, M. Demographic classification from face videos using manifold learning. Neurocomputing 2012, 100, 197–205. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Zhou, R.; Ge, B. Autonomic failure prediction based on manifold learning for large-scale distributed systems. J. China Univ. Posts Telecommun. 2010, 17, 116–124. [Google Scholar] [CrossRef]
- Wachinger, C.; Yigitsoy, M.; Rijkhorst, E.G.; Navab, N. Manifold learning for image-based breathing gating in ultrasound and MRI. Med. Image Anal. 2012, 16, 806–818. [Google Scholar] [CrossRef] [PubMed]
- He, X. Locality preserving projections. Adv. Neural Inf. Process. Syst. 2005, 45, 186–197. [Google Scholar]
- Zhao, Z.; Zhang, L.; Zhao, M.; Hou, Z.; Zhang, C. Gabor face recognition by multi-channel classifier fusion of supervised kernel manifold learning. Neurocomputing 2012, 97, 398–404. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, F.; Tan, W.; Jia, J.; Yang, J. Gabor feature-based face recognition using supervised locality preserving projection. Signal Process. 2007, 87, 2473–2483. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, Q.; Lu, H.; Chen, Y. Supervised kernel locality preserving projections for face recognition. Neurocomputing 2005, 67, 443–449. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 2002, 14, 585–591. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, H.; Zhang, D.; Wang, K. Post-processed LDA for face and palmprint recognition: What is the rationale. Signal Process. 2010, 90, 2344–2352. [Google Scholar] [CrossRef]
- Baudat, G.; Anouar, F. Generalized discriminant analysis using a kernel approach. Neural Comput. 2000, 12, 2385–2404. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; pp. 325–331.
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Dasarathy, B.V. Nearest neighbor classification techniques. Stud. Fuzziness Soft Comput. 1994, 27, 181–203. [Google Scholar]
Pathogens | Metabolites |
---|---|
S. aureus | Acetic acid, Aminoacetophenone, Ammonia, Ethanol, Formaldehyde, Isobutanol, Isopentyl acetate, Isopentanol, Methyl ketones, Trimethylamine, 1-Undecene, 2,5-Dimethylpyrazine isoamylamine, 2-Methylamine |
E. coli | Acetaldehyde, Acetic acid, Aminoacetophenone, Butanediol, Decanol, Dimethyldisulfide, Dimethyltrisulfide, Dodecanol, Ethanol, Formaldehyde, Formic acid, Hydrogen sulfide, Indole, Lactic acid, Methanethiol, Methyl ketones, Octanol, Pentanols, Succinic acid, 1-Propanol |
P. aeruginosa | Butanol, Dimethyldisulfide, Dimethyltrisulfide, Esters, Methyl ketones, Isobutanol, Isopentanol, Isopentyl acetate, Pyruvate, Sulphur compounds, Toluene, 1-Undecene, 2-Aminoacetophenone, 2-Butanone, 2-Heptanone, 2-Nonanone, 2-Undecanone |
Sensors | Sensitive characteristic |
---|---|
TGS800 | Methane, Carbon monoxide, Isobutane, Hydrogen, Ethanol |
TGS813 | Methane, Propane, Ethanol, Isobutane, Hydrogen, Carbon monoxide |
TGS816 | Combustible gases, Methane,Propane, Butane, Carbon monoxide, Hydrogen, Ethanol, Isobutane |
TGS822 | Organic solvent vapors, Methane, Carbon monoxide, Isobutane, n-Hexane, Benzene, Ethanol, Acetone |
TGS825 | Hydrogen sulfide |
TGS826 | Ammonia, Ethanol, Isobutane, Hydrogen |
TGS2600 | Gaseous air contaminants, Methane, Carbon monoxide, Isobutane, Ethanol, Hydrogen |
TGS2602 | VOCs, Odorous gases, Ammonia, Hydrogen sulfide, Toluene, Ethanol |
TGS2620 | Vapors of organic solvents, combustible gases, Methane, Carbon monoxide, Isobutane, Hydrogen, Ethanol |
WSP2111 | Benzene, Toluene, Ethanol, Hydrogen, Formaldehyde, Acetone |
MQ135 | Ammonia, Benzene series material, Acetone, Carbon monoxide, Ethanol, Smoke |
MQ138 | Alcohols, Aldehydes, Ketones, Aromatics |
QS-01 | VOCs, Hydrogen, Carbon monoxide, Metane, Isobutane, Etanol, Ammonia |
SP3S-AQ2 | VOCs, Methane, Isobutane, Carbon monoxide, Hydrogen, Ethanol |
AQ | Carbon monoxide, Methanol, Ethanol, Isopropanol, Formaldehyde, Acetaldehyde, Sulfur dioxide, Hydrogen, Hydrogen sulfide, Phenol, Dimethyl ether, Ethylene |
No-Infection | P. aeruginosa | E. coli | S. aureus | |
---|---|---|---|---|
No-infection | 1155.5567 | 1372.7781 | 1325.8864 | 1344.9724 |
P. aeruginosa | 1372.7781 | 1461.6700 | 1488.3676 | 1499.6072 |
E. coli | 1325.8864 | 1488.3676 | 1416.4451 | 1523.1622 |
S. aureus | 1344.9724 | 1499.6072 | 1523.1622 | 1100.3343 |
Methods | L | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|
No-Infection | P. aeruginosa | E. coli | S. aureus | Total | ||
No-dealing | 15 | 85 | 85 | 90 | 85 | 86.25 |
PCA | 10 | 90 | 90 | 85 | 85 | 87.5 |
FDA | 3 | 75 | 80 | 85 | 85 | 81.25 |
KFDA | 3 | 90 | 95 | 95 | 95 | 93.75 |
SLPP | 7 | 100 | 95 | 100 | 100 | 98.75 |
Methods | L | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|
No-Infection | P. aeruginosa | E. coli | S. aureus | Total | ||
No-dealing | 15 | 85 | 90 | 90 | 75 | 85 |
PCA | 10 | 90 | 80 | 90 | 85 | 86.25 |
FDA | 3 | 75 | 80 | 70 | 95 | 80 |
KFDA | 3 | 90 | 95 | 90 | 95 | 92.5 |
SLPP | 7 | 100 | 95 | 90 | 100 | 96.25 |
Methods | L | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|
No-Infection | P. aeruginosa | E. coli | S. aureus | Total | ||
No-dealing | 15 | 80 | 80 | 95 | 75 | 82.5 |
PCA | 10 | 85 | 85 | 90 | 75 | 83.75 |
FDA | 3 | 75 | 80 | 70 | 95 | 80 |
KFDA | 3 | 85 | 85 | 90 | 90 | 87.5 |
SLPP | 7 | 100 | 85 | 90 | 100 | 93.75 |
Methods | L | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|
No-Infection | P. aeruginosa | E. coli | S. aureus | Total | ||
No-dealing | 15 | 85 | 80 | 80 | 85 | 82.5 |
PCA | 11 | 90 | 85 | 75 | 85 | 83.75 |
FDA | 3 | 85 | 80 | 75 | 85 | 81.25 |
KFDA | 3 | 95 | 90 | 90 | 90 | 91.25 |
SLPP | 8 | 100 | 90 | 90 | 100 | 95 |
Methods | L | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|
No-Infection | P. aeruginosa | E. coli | S. aureus | Total | ||
No-dealing | 15 | 80 | 80 | 75 | 80 | 81.25 |
PCA | 11 | 85 | 80 | 75 | 85 | 81.25 |
FDA | 3 | 75 | 75 | 70 | 80 | 77.5 |
KFDA | 3 | 90 | 90 | 85 | 90 | 88.75 |
SLPP | 8 | 100 | 90 | 85 | 100 | 93.75 |
Methods | L | Classification Accuracy (%) | ||||
---|---|---|---|---|---|---|
No-Infection | P. aeruginosa | E. coli | S. aureus | Total | ||
No-dealing | 15 | 75 | 75 | 75 | 85 | 77.5 |
PCA | 11 | 80 | 80 | 75 | 85 | 80 |
FDA | 3 | 75 | 75 | 70 | 85 | 76.25 |
KFDA | 3 | 85 | 90 | 85 | 90 | 87.5 |
SLPP | 8 | 100 | 80 | 85 | 100 | 91.25 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, P.; Huang, T.; Wang, L.; Duan, S.; Yan, J.; Wang, L. A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections. Sensors 2016, 16, 1019. https://doi.org/10.3390/s16071019
Jia P, Huang T, Wang L, Duan S, Yan J, Wang L. A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections. Sensors. 2016; 16(7):1019. https://doi.org/10.3390/s16071019
Chicago/Turabian StyleJia, Pengfei, Tailai Huang, Li Wang, Shukai Duan, Jia Yan, and Lidan Wang. 2016. "A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections" Sensors 16, no. 7: 1019. https://doi.org/10.3390/s16071019
APA StyleJia, P., Huang, T., Wang, L., Duan, S., Yan, J., & Wang, L. (2016). A Novel Pre-Processing Technique for Original Feature Matrix of Electronic Nose Based on Supervised Locality Preserving Projections. Sensors, 16(7), 1019. https://doi.org/10.3390/s16071019