Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Image Analysis Process
2.2. Creation of Color Histograms and Employment of the Contrast Enhancement Procedure
2.3. Creation of a Threshold Value
- channel 1: channel1Min = 0.115; channel1Max = 0.436;
- channel 2: channel2Min = 0.526; channel2Max = 1.000;
- channel 3: channel3Min = 0.627; channel3Max = 1.000;
2.4. Creation of the “Open Area”
2.5. Creation of a Threshold Value to Complete Total Green Pixel Segmentation/Classification
2.6. Creation of a Table
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Algorithm A1. MATLAB Script. |
1: clear all 2: start = 01; 3: end = 96; 4: T = zeros(end-start + 1,3); 5:(start loop) 6: for j = start:end 7: start = 01; 8: end = 96; 9: String = num2str(j); 10: P = imread([‘P’ String ‘.JPG’]); 11: %P = imread(‘P93.jpg’); 12: %P = imrotate(P,−90); 13: %imshow(P) 14: %cut image to the right size 15: %P = P(20:631,:,:); 16: %imshow(P); 17: %create color histogram 18: imhist(P(:,:,2)) 19: %increase contrast 20: P_contrast = decorrstretch(P, ‘Tol’, 0.01); 21: imshow(P_contrast); 22: % 1)create threshold 23: % Convert RGB image to chosen color space 24: I = rgb2hsv(P); 25: % Define thresholds for channel 1 based on histogram settings 26: channel1Min = 0.115; 27: channel1Max = 0.436; 28: % Define thresholds for channel 2 based on histogram settings 29: channel2Min = 0.526; 30: channel2Max = 1.000; 31: % Define thresholds for channel 3 based on histogram settings 32: channel3Min = 0.627; 33: channel3Max = 1.000; 34: % Create mask based on chosen histogram thresholds 35: BW = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ... 36: (I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ... 37: (I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max); 38: % Initialize output masked image based on input image. 39: maskedRGBImage = P; 40: % Set background pixels where BW is false to zero. 41: maskedRGBImage(repmat(~BW,[1 1 3])) = 0; 42: imshow(BW) 43: % 2) count plants 44: imshow(BW) 45: Test = bwareaopen(BW,5); 46: Test = imfill(Test, ’holes’); 47: B = bwboundaries(Test); 48: imshow(Test) 49: hold on 50: visboundaries(B) 51: cc = bwconncomp(Test); 52: graindata = regionprops(cc,’basic’); 53: number of plants = cc.NumObjects; 54: % convert image to matrix 55: figure(2); 56: Histi = reshape(P(:,:,2),[],1); 57: Histi1 = im2double(Histi) *255; 58: hist(Histi1,100); 59: title(‘green-value’); 60: % 3) create binary image and calculate ground cover 61: % Convert RGB image to chosen color space 62: RGB = im2double(P); 63: imshow(RGB) 64:cform=makecform(‘srgb2lab’,‘AdaptedWhitePoint’,whitepoint(‘D65’)); 65: I = applycform(RGB,cform); 66: % Define thresholds for channel 1 based on histogram settings 67: channel1Min = 12.502; 68: channel1Max = 100.000; 69: % Define thresholds for channel 2 based on histogram settings 70: channel2Min = −10.414; 71: channel2Max = 8.329; 72: % Define thresholds for channel 3 based on histogram settings 73: channel3Min = −8.447; 74: channel3Max = 67.004; 75: % Create mask based on chosen histogram thresholds 76: BW_1 = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ... 77: (I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ... 78: (I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max); 79: % Initialize output masked image based on input image. 80: maskedRGBImage = RGB; 81: % Set background pixels where BW is false to zero. 82: maskedRGBImage(repmat(~BW_1,[1 1 3])) = 0; 83: imshow(BW_1) 84: %3.1) count green pixels 85: numtotal = nnz(P) 86: numgreenpixel = nnz(BW_1) 87: Green_percent = (numgreenpixel/numtotal) *100 88: T(j-start + 1,1) = number of plants; 89: T(j-start + 1,2) = numgreenpixel; 90: T(j-start + 1,3) = Green_percent; 91: clear(‘-regexp’,’[^T] *’); 92: end (end of loop) |
References
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Tripicchio, P.; Satler, M.; Dabisias, G.; Ruffaldi, E.; Avizzano, C.A. Towards smart farming and sustainable agriculture with drones. In Proceedings of the 2015 International Conference on Intelligent Environments IE 2015, Prague, Czech Republic, 15–17 July 2015; pp. 140–143. [Google Scholar]
- Pena, J.M.; Torres-Sanchez, J.; de Castro, A.I.; Kelly, M.; Lopez-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (uav) images. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. Selecting patterns and features for between- and within- crop-row weed mapping using uav-imagery. Expert Syst. Appl. 2016, 47, 85–94. [Google Scholar] [CrossRef]
- Geesing, D.; Diacono, M.; Schmidhalter, U. Site-specific effects of variable water supply and nitrogen fertilisation on winter wheat. J. Plant Nutr. Soil Sci. 2014, 177, 509–523. [Google Scholar] [CrossRef]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on uavs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [Google Scholar] [CrossRef]
- Barmeier, G.; Schmidhalter, U. High-throughput phenotyping of wheat and barley plants grown in single or few rows in small plots using active and passive spectral proximal sensing. Sensors 2016, 16, 1860. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, L.; Mistele, B.; Schmidhalter, U. Evaluation of active and passive sensor systems in the field to phenotype maize hybrids with high-throughput. Field Crop. Res. 2013, 154, 236–245. [Google Scholar] [CrossRef]
- Dharani, T.; Aroquiaraj, I.L.; Mageshwari, V. Diverse image investigation using image metrics for content based image retrieval system. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Tamilnadu, India, 26–27 August 2016; pp. 1–8. [Google Scholar]
- Kipp, S.; Mistele, B.; Baresel, P.; Schmidhalter, U. High-throughput phenotyping early plant vigour of winter wheat. Eur. J. Agron. 2014, 52, 271–278. [Google Scholar] [CrossRef]
- Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J.M.; Guijarro, M.; Ribeiro, A. Crop row detection in maize fields inspired on the human visual perception. Sci. World J. 2012. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 2011, 75, 337–346. [Google Scholar] [CrossRef]
- Berge, T.W.; René cederkvist, H.; Aastveit, A.H.; Fykse, H. Simulating the effects of mapping and spraying resolution and threshold level on accuracy of patch spraying decisions and herbicide use based on mapped weed data. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 216–229. [Google Scholar] [CrossRef]
- Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbe, S.; Baret, F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Panigrahi, S. Leaf nitrogen determination of corn plant using aerial images and artificial neural networks. Can. Biosyst. Eng. 2007, 49, 7. [Google Scholar]
- Martin, J.; Edwards, H.H.; Burgess, M.A.; Percival, H.F.; Fagan, D.E.; Gardner, B.E.; Ortega-Ortiz, J.G.; Ifju, P.G.; Evers, B.S.; Rambo, T.J. Estimating distribution of hidden objects with drones: From tennis balls to manatees. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J.; Andersen, S.B.; Wille, W.K.M.; Griepentrog, H.W.; Olsen, J.M. Evolutionary agroecology: The potential for cooperative, high density, weed-suppressing cereals. Evol. Appl. 2010, 3, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Maddonni, G.A.; Chelle, M.; Drouet, J.L.; Andrieu, B. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: Simulations and crop measurements. Field Crop. Res. 2001, 70, 1–13. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E.; Cirilo, A.G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Abdin, O.A.; Zhou, X.M.; Cloutier, D.; Coulman, D.C.; Faris, M.A.; Smith, D.L. Cover crops and interrow tillage for weed control in short season maize (zea mays). Eur. J. Agron. 2000, 12, 93–102. [Google Scholar] [CrossRef]
- Götz, S.; Bernhardt, H. Produktionsvergleich von Gleichstandsaat und Normalsaat bei Silomais. LANDTECHNIK Agric. Eng. 2010, 65, 107–110. [Google Scholar]
- Assefa, Y.; Vara Prasad, P.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, I.A. Yield responses to planting density for us modern corn hybrids: A synthesis-analysis. Crop Sci. 2016, 56, 2802–2817. [Google Scholar] [CrossRef]
- Testa, G.; Reyneri, A.; Blandino, M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur. J. Agron. 2016, 72, 28–37. [Google Scholar] [CrossRef]
- MathWorks. Image Processing Toolbox™ User’s Guide. MATLAB; The MathWorks Inc.: Natick, MA, USA, 2016; Volume R2016b. [Google Scholar]
- Padmapriya, A.; Vigneshnarthi, S. Image processing operations for 3-d image. Int. J. Sci. Res. Publ. 2012, 2, 1–6. [Google Scholar]
- Sural, S.; Gang, Q.; Pramanik, S. Segmentation and histogram generation using the HSV color space for image retrieval. In Proceedings of the International Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002; Volume 582, pp. II-589–II-592. [Google Scholar]
- Recky, M.; Leberl, F. Windows detection using k-means in cie-lab color space. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 356–359. [Google Scholar]
- Bullock, D.G.; Nielsen, R.L.; Nyquist, W.E. A growth analysis comparison of corn grown in conventional and equidistant plant spacing. Crop Sci. 1988, 28, 254–258. [Google Scholar] [CrossRef]
- Hoff, D.J.; Mederski, H.J. Effect of equidistant corn plant spacing on yield. Agron. J. 1960, 52, 295–297. [Google Scholar] [CrossRef]
- Turgut, I.; Duman, A.; Bilgili, U.; Acikgoz, E. Alternate row spacing and plant density effects on forage and dry matter yield of corn hybrids (zea mays L.). J. Agron. Crop Sci. 2005, 191, 146–151. [Google Scholar] [CrossRef]
- Solomon, C.; Breckon, T. Fundamentals of Digital Image Processing: A Practical Approach with Examples in MATLAB; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- She, T.; Ehsani, R.; Robbins, J.; Leiva, J.N.; Owen, J. Applications of Small UAV Systems for Tree and Nursery Inventory Management. In Proceedings of the 12th International Conference on Precision Agriculture, Sacramento, CA, USA, 20–23 July 2014. [Google Scholar]
- Yang, C.; Prasher, S.; Landry, J.; Perret, J.; Ramaswamy, H. Recognition of weeds with image processing and their use with fuzzy logic for precision farming. Can. Agric. Eng. 2000, 42, 195–200. [Google Scholar]
- Blackmore, S. The interpretation of trends from multiple yield maps. Comput. Electron. Agric. 2000, 26, 37–51. [Google Scholar] [CrossRef]
Cultivar | Usage | Maturity Group | FAO Number |
---|---|---|---|
Cannavaro | biogas | very late | S 310 |
Lapriora | corn | early | K 190 |
Saludo | silage, corn | early | S10, K210 |
Vitallo | silage | late | S270 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnädinger, F.; Schmidhalter, U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sens. 2017, 9, 544. https://doi.org/10.3390/rs9060544
Gnädinger F, Schmidhalter U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sensing. 2017; 9(6):544. https://doi.org/10.3390/rs9060544
Chicago/Turabian StyleGnädinger, Friederike, and Urs Schmidhalter. 2017. "Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs)" Remote Sensing 9, no. 6: 544. https://doi.org/10.3390/rs9060544
APA StyleGnädinger, F., & Schmidhalter, U. (2017). Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote Sensing, 9(6), 544. https://doi.org/10.3390/rs9060544