Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Lithological Mapping Using OBIA
2.3.1. Input Feature Selection
2.3.2. Segmentation
2.3.3. Classification
2.4. Lithological Mapping Accuracy Assessment
2.4.1. Thematic Accuracy
2.4.2. Lithological Contact Accuracy
3. Results and Discussion
3.1. Lithological Discrimination Using the OBIA Approach
3.2. Comparison of OBIA and Per-Pixel Approaches to Lithological Discrimination
3.3. Lithological Contact Mapping Performance
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. A review on spectral processing methods for geological remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 69–90. [Google Scholar] [CrossRef]
- Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 3–17. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Rothery, D.A. Reflectances of ophiolite rocks in the Landsat MSS bands: Relevance to lithological mapping by remote sensing. J. Geol. Soci. 1984, 141, 933–939. [Google Scholar] [CrossRef]
- Ricchetti, E. Multispectral satellite image and ancillary data integration for geological classification. Photogramm. Eng. Remote Sens. 2000, 66, 429–435. [Google Scholar]
- An, P.; Chung, C.F.; Rencz, A.N. Digital lithology mapping from airborne geophysical and remote sensing data in the Melville Peninsula, northern Canada, using a neural network approach. Remote Sens. Environ. 1995, 53, 76–84. [Google Scholar] [CrossRef]
- Bedini, E. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sens. Environ. 2009, 113, 1208–1219. [Google Scholar] [CrossRef]
- Salati, S.; van Ruitenbeek, F.J.A.; van der Meer, F.D.; Tangestani, M.H.; van der Werff, H. Lithological mapping and fuzzy set theory: Automated extraction of lithological boundary from ASTER imagery by template matching and spatial accuracy assessment. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 753–765. [Google Scholar] [CrossRef]
- Mustard, J.F.; Pieters, C.M. Abundance and distribution of ultramafic microbreccia in Moses Rock Dike: Quantitative application of mapping spectroscopy. J. Geophys. Res. 1987, 92, 10376–10390. [Google Scholar] [CrossRef]
- Bowers, T.L.; Rowan, L.C. Remote mineralogic and lithologic mapping of the Ice River Alkaline Complex, British Columbia, Canada, using AVIRIS data. Photogramm. Eng. Remote Sens. 1996, 62, 1379–1385. [Google Scholar]
- Leverington, D.W.; Moon, W.M. Landsat-TM-based discrimination of lithological units associated with the Purtiniq ophiolite, Quebec, Canada. Remote Sens. 2012, 4, 1208–1231. [Google Scholar] [CrossRef]
- Harris, J.R.; McGregor, R.; Budkewitsch, P. Geological analysis of hyperspectral data over southwest Baffin Island: Methods for producing spectral maps that relate to variations in surface lithologies. Can. J. Remote Sens. 2010, 36, 412–435. [Google Scholar] [CrossRef]
- Siegal, B.S.; Goetz, A.F.H. Effect of vegetation on rock and soil type discrimination. Photogramm. Eng. Remote Sens. 1977, 43, 191–196. [Google Scholar]
- Ager, C.M.; Milton, N.M. Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics 1987, 52, 898–906. [Google Scholar] [CrossRef]
- Bierwirth, P.N. Mineral mapping and vegetation removal via data-calibrated pixel unmixing, using multispectral images. Int. J. Remote Sens. 1990, 11, 1999–2017. [Google Scholar] [CrossRef]
- Zhang, J.; Rivard, B.; Sanchez-Azofeifa, A. Spectral unmixing of normalized reflectance data for the deconvolution of lichen and rock mixtures. Remote Sens. Environ. 2005, 95, 57–66. [Google Scholar] [CrossRef]
- Paradella, W.R.; Vitorello, I. Geobotanical and soil spectral investigation for rock discrimination in the ‘Caatinga’ environment (Brazil) based on multitemporal remote sensing data. Can. J. Remote Sens. 1995, 21, 52–59. [Google Scholar] [CrossRef]
- Harris, J.R.; Rogge, D.; Hitchcock, R.; Ijewliw, O.; Wright, D. Mapping lithology in Canada’s Arctic: Application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can. J. Earth Sci. 2005, 42, 2173–2193. [Google Scholar] [CrossRef]
- Kühni, A.; Pfiffner, O.A. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM. Geomorphology 2001, 41, 285–307. [Google Scholar] [CrossRef]
- Belt, K.; Paxton, S.T. GIS as an aid to visualizing and mapping geology and rock properties in regions of subtle topography. Geol. Soc. Am. Bull. 2005, 117, 149–160. [Google Scholar] [CrossRef]
- Mather, P.M.; Tso, B.; Koch, M. An evaluation of Landsat TM spectral data and SAR-derived textural information for lithological discrimination in the Red Sea Hills, Sudan. Int. J. Remote Sens. 1998, 19, 587–604. [Google Scholar] [CrossRef]
- Grebby, S.; Naden, J.; Cunningham, D.; Tansey, K. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens. Environ. 2011, 115, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; Tiede, D. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angew. Geogr. Informationsverarbeitung XII 2000, 58, 12–23. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ. 2008, 112, 2988–2998. [Google Scholar] [CrossRef]
- Lucieer, A.; Stein, A. Texture-based landform segmentation of LiDAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2005, 6, 261–270. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Blaschke, T. Automated classification of landform elements using object-based image analysis. Geomorphology 2006, 81, 330–344. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R.; Tullis, J.A. Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; Sánchez de la Ordena, M.; González-Audicana, M. Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Comput. Electron. Agric. 2009, 68, 207–215. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Lucieer, A.; Orkhonselenge, T.; Stein, A. Texture-based segmentation for identification of geological units in remotely sensed imagery. In Proceedings of the 3rd International Symposium on Spatial Data Quality (ISSDQ), Bruck an der Leitha, Austria, 15–17 April 2004.
- Van der Werff, H.; van Ruitenbeek, F.; van der Meer, F. Geological mapping on Mars by segmentation of hyperspectral OMEGA data. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, Barcelona, Spain, 23–28 July 2007.
- Kassouk, Z.; Thouret, J.-C.; Gupta, A.; Solikhin, A.; Liew, S.C. Object-oriented classification of a high-spatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology 2014, 221, 18–33. [Google Scholar] [CrossRef]
- Thouret, J.C.; Kassouk, Z.; Gupta, A.; Liew, S.C.; Solikhin, A. Tracing the evolution of 2010 Merapi volcanic deposits (Indonesia) based on object-oriented classification and analysis of multi-temporal very high resolution images. Remote Sens. Environ. 2015, 170, 350–371. [Google Scholar] [CrossRef]
- Munyati, C.; Ratshibvumo, T.; Ogola, J. Landsat TM image segmentation for delineating geological zone correlated vegetation stratification in the Kruger National Park, South Africa. Phys. Chem. Earth 2013, 55, 1–10. [Google Scholar] [CrossRef]
- Gass, I.G. Is the Troodos massif of Cyprus a fragment of mesozoic ocean crust? Nature 1968, 220, 39–42. [Google Scholar] [CrossRef]
- Varga, R.J.; Moores, E.M. Spreading structure of the Troodos ophiolite, Cyprus. Geology 1985, 13, 846–850. [Google Scholar] [CrossRef]
- Gass, I.G. The Geology and Mineral Resources of the Dhali Area; Cyprus Geological Survey Department: Lefkosia, Cyprus, 1960.
- Constantinou, G. Geological Map of Cyprus, Scale 1:250,000; Cyprus Geological Survey Department: Lefkosia, Cyprus, 1995.
- Grebby, S.; Cunningham, D.; Naden, J.; Tansey, K. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data. Remote Sens. Environ. 2010, 114, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Grebby, S.; Cunningham, D.; Tansey, K.; Naden, J. The impact of vegetation on lithological mapping using airborne multispectral data: A case study for the North Troodos region, Cyprus. Remote Sens. 2014, 6, 10860–10887. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Trimble. eCognition Developer 9.1 User Guide; Trimble Documentation: Munich, Germany, 2015. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Sample size determination for image classification accuracy assessment and comparison. Int. J. Remote Sens. 2009, 30, 5273–5291. [Google Scholar] [CrossRef]
- Tortora, R.D. A note on sample size estimation for multinomial populations. Am. Stat. 1978, 32, 100–102. [Google Scholar]
- Fitzpatrick-Lins, K. Comparison of sampling procedures and data analysis for a land-use and land-cover map. Photogramm. Eng. Remote Sens. 1981, 47, 343–351. [Google Scholar]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Map Accuracy Standards. Available online: http://pubs.usgs.gov/fs/1999/0171/ (accessed on 15 April 2016).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Bear, L.M. The Geology and Mineral Resources of the Akaki-Lythrodondha Area; Geological Survey Department: Lefkosia, Cyprus, 1960.
- Kim, M.; Madden, M.; Warner, T.A. Forest type mapping using object-specific texture measures from multispectral Ikonos imagery: Segmentation quality and image classification issues. Photogramm. Eng. Remote Sens. 2009, 75, 819–829. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Yildiz, M. Parameter-based performance analysis of object-based image analysis using aerial and Quickbird-2 images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci. 2014, II-7, 31–37. [Google Scholar] [CrossRef]
- Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region‐growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040. [Google Scholar]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sens. Environ. 2011, 115, 2976–2985. [Google Scholar] [CrossRef]
Lithological Unit | Constituent Minerals |
---|---|
Alluvium-colluvium | Mineralogy reflects that of parent Lefkara Formation, Pillow Lavas and fanglomerate rocks, with minor variations due to weathering |
Lefkara Formation | Calcite, aragonite, illite, chlorite, kaolinite, montmorillonite, chalcedony and quartz |
Pillow Lavas | Labradorate, andesine, diopside, magnetite, quartz, opal, calcite, chlorite, celadonite, goethite, natrolite, olivine, hematite, montmorillonite and analcime |
Basal Group | Quartz, albite, diopside, epidote, actinolite, chlorite, calcite, goethite, magnetite, hypersthene, andesine and labradorite |
Dataset | Input Features | |
---|---|---|
Topographic characteristics | ||
Li | Slope, absolute profile curvature, absolute plan curvature, residual roughness, hypsometric integral | |
Spectral (vegetation) characteristics | ||
ATM 9 | ATM bands 2–10 | |
ATM PC | First three principal component (PC) bands derived from analysis of ATM 9 dataset a | |
ATM MNF | First four Minimum Noise Fraction (MNF) bands derived from transformation of ATM 9 dataset b | |
Integrated spectral-topographic characteristics | ||
ATM-Li | ATM bands 2–10, slope, absolute profile curvature, absolute plan curvature, residual roughness, hypsometric integral | |
ATM-Li MNF | First five Minimum Noise Fraction (MNF) bands derived from transformation of ATM-Li dataset c |
Dataset | Scale | Colour | Shape | Smoothness | Compactness |
---|---|---|---|---|---|
Li | 1 | 0.9 | 0.1 | 0.99 | 0.01 |
ATM 9 | 1 | 0.9 | 0.1 | 0.99 | 0.01 |
ATM PC | 1 | 0.9 | 0.1 | 0.99 | 0.01 |
ATM MNF | 1 | 0.9 | 0.1 | 0.999 | 0.001 |
ATM-Li | 1 | 0.99 | 0.01 | 0.999 | 0.001 |
ATM-Li MNF | 1 | 0.99 | 0.01 | 0.99 | 0.01 |
Dataset | OBIA | Per-Pixel | p-Value | |||
---|---|---|---|---|---|---|
OA (%) | K | OA (%) | K | |||
Li | 68.9 | 0.59 | 65.4 | 0.53 | <0.0001 | |
ATM 9 | 69.5 | 0.59 | 60.3 | 0.48 | <0.0001 | |
ATM PC | 63.3 | 0.50 | 50.2 | 0.35 | <0.0001 | |
ATM MNF | 70.1 | 0.60 | 65.5 | 0.54 | <0.0001 | |
ATM-Li | 73.5 | 0.65 | 70.2 | 0.60 | <0.0001 | |
ATM-Li MNF | 73.3 | 0.63 | 72.7 | 0.63 | <0.0001 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grebby, S.; Field, E.; Tansey, K. Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain. Remote Sens. 2016, 8, 843. https://doi.org/10.3390/rs8100843
Grebby S, Field E, Tansey K. Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain. Remote Sensing. 2016; 8(10):843. https://doi.org/10.3390/rs8100843
Chicago/Turabian StyleGrebby, Stephen, Elena Field, and Kevin Tansey. 2016. "Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain" Remote Sensing 8, no. 10: 843. https://doi.org/10.3390/rs8100843
APA StyleGrebby, S., Field, E., & Tansey, K. (2016). Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain. Remote Sensing, 8(10), 843. https://doi.org/10.3390/rs8100843