Retrieval of Coarse-Resolution Leaf Area Index over the Republic of Kazakhstan Using NOAA AVHRR Satellite Data and Ground Measurements
Abstract
:1. Introduction
2. Data
2.1. Ground-Based Leaf Area Index
2.1.1. Sampling Strategy for Ground-Based Measurements
2.1.2. Computations of Leaf Area Index from Ground-Based Measurements
2.2. Satellite Data
2.2.1. Spatial Coarse-Resolution AVHRR Data
2.2.2. High-Resolution Satellite Data
2.2.3. Land Cover Data
3. Methods
3.1. Radiative Transfer Model to Derive Satellite-Based LAI
3.2. Fractional Vegetation Cover
3.3. Modelling Light Extinction Coefficient
3.4. Retrieval of 8-km Spatial Resolution Data Set of LAI for the Area of Kazakhstan
- The fC model (Equation (3), Section 3.2) was applied to 1-month composite GIMMS NDVI images from 1982 through 2008. The input parameters NDVIs and NDVIv were obtained for each vegetation class respectively.
- Vegetation class-specific parameters x, Ωmax, c, and Θ for modeling the light extinction coefficient (Equations (4–8)) were determined. The average leaf inclination angle Θ for each individual vegetation class was modeled from hemispherical photos using the routine procedure included in the Can Eye software. After that, the ratio of vertical to horizontal projection of canopy elements x for individual vegetation types was calculated using Equation (6). The maximum clumping index for an individual vegetation type was assumed to be equal to the highest Ω among all test sites within this vegetation type. The parameter c for Equation (7) was obtained by inverting this equation for a known value of the clumping index which was retrieved from hemispherical photography.
- The algorithm for the light extinction coefficient was applied at the 8-km pixel scale using a combination of vegetation class-specific input parameters, the gridded data set of mean monthly solar zenith angle, the NOAA AVHRR Land Cover and GTOPO30 elevation data sets [60] to retrieve maps of the light extinction coefficient for the whole area of Kazakhstan. Temporally, the monthly maps of the extinction coefficient covered the period 1982–2010.
- LAI maps were estimated for each 1-month composite period from January 1982 through December 2008 employing the above LAI retrieval algorithm (Equation (2)) using the data sets produced by the processing steps 1 and 3.
3.5. Validation of the 8-km Spatial Resolution Kazakhstan-Wide AVHRR LAI Product
3.5.1. Comparison with Ground-Based Data
3.5.2. Comparison with Other LAI Products
4. Results
4.1. The New National-Wide 8-km Spatial Resolution AVHRR LAI Data Set
4.2. Validation
4.2.1. Validation at the Grassland Site in Central Kazakhstan (Shetsky Region)
4.2.2. Validation at the Almaty Wood/Forest Site
4.3 Comparison with LAI_PAL_BU_V3 Monthly Composite LAI Data
4.3.1. Spatial Consistency of the Data Sets
4.3.2. Temporal Consistency of the Data Sets
4.4. Comparison with MODIS Monthly Composite LAI Data
5. Conclusions
Acknowledgments
References
- Jonckheere, I.; Fleck, S.; Nachaerts, K.; Muysa, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agr. Forest Meteorol 2007, 121, 19–35. [Google Scholar]
- Breda, N.J.J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot 2003, 54, 2403–2417. [Google Scholar]
- Weiss, M.; Baret, F.; Smith, G. L.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index determination. Part II. Estimation of LAI, errors and sampling. Agr. Forest Meteorol 2004, 121, 37–53. [Google Scholar]
- Chen, J.; Cihlar, J. Retrieving LAI of boreal conifer forests using Landsat TM images. Remote Sens. Environ 1996, 55, 153–162. [Google Scholar]
- White, J.; Running, S.; Nemani, R.; Keane, R.; Ryan, K. Measurement and remote sensing of LAI in rocky mountain montane ecosystems. Can. J. Forest Res 1997, 27, 1714–1727. [Google Scholar]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fessnacht, K.S.; Briggs, J.M. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ 1999, 70, 52–68. [Google Scholar]
- Brown, L.J.; Chen, J.M.; Leblanc, S.G.; Cihlar, J. Shortwave infrared correction to the simple ratio: An image and model analysis. Remote Sens. Environ 2000, 77, 16–25. [Google Scholar]
- Eklundh, L.; Harrie, L.; Kuusk, A. Investigating relationships between Landsat ETM+ sensor data and LAI in a boreal conifer forest. Remote Sens. Environ 2001, 78, 239–251. [Google Scholar]
- Chen, M.; Pavlic, G.; Brown, L.; Cuhlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofimow, J.A.; et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ 2002, 80, 165–184. [Google Scholar]
- Propastin, P. Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of LAI over a tropical rainforest in Sulawesi, Indonesia. Remote Sens. Environ 2009, 113, 2234–2242. [Google Scholar]
- Myneni, R.B.; Knyazikhin, Y.; Zhang, Y.; Tian, Y.; Wang, Y.; Lutach, A.; Privette, J.L.; Morisette, J.T.; Running, S.W.; Nemani, R.; et al. MODIS Leaf Area Index and Fraction of Photosynthetically Absorbed Radiation (MOD15) Algorithm Theoretical Basis Document. 1999. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 30 November 2011).
- Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res 1998, 103, 32239–32256. [Google Scholar]
- Myneni, R.; Hoffman, R.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, H. Global products of vegetation leaf area and fraction absorbed PAR from one year of MODIS data. Remote Sens. Environ 2002, 83, 214–231. [Google Scholar]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Nino, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR, and FCover CYCLOPES global products derived from Vegetation. Part 1: principles of the algorithm. Remote Sens. Environ 2007, 110, 305–316. [Google Scholar]
- Verger, A.; Camacho, F.; Garsia-Haro, J.; Melia, J. Evaluation of an operational leaf area index retrieval approach using VEGETATION and MODIS data. EARSeL eProc 2009, 8, 180–187. [Google Scholar]
- Myneni, R.B.; Nemani, R.R.; Running, S.W. Estimation of global leaf area index and absorped par using radiative transfer models. IEEE Trans. Geosci. Remote Sens 1997, 35, 1380–1393. [Google Scholar]
- Buermann, W.; Wang, Y.; Dong, J.; Zhou, L.; Zeng, X.; Dickinson, R.E.; Potter, C.S.; Myneni, R.B. Analysis of a multiyear global vegetation leaf area index data set. J. Geophys. Res 2002, 107, 4646. [Google Scholar]
- Ganguly, S.; Samanta, A.; Schull, M.A.; Shabanov, N.V.; Milesi, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ 2008, 112, 4318–4332. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Validation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ 2004, 91, 490–507. [Google Scholar]
- Hill, M.J.; Senarath, U.; Lee, A.; Zeppel, M.; Nightingale, J.M.; Williams, R.J.; McVicar, T.R. Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens. Environ 2006, 101, 495–518. [Google Scholar]
- Fang, H.; Liang, S.; Townshend, J.R.; Dickinson, R.E. Spatially and temporally continuous LAI data sets based on an integrated filtering method: examples from North America. Remote Sens. Environ 2008, 112, 75–93. [Google Scholar]
- Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I.; et al. MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens 2006, 44, 1885–1898. [Google Scholar]
- Pisek, J.; Chen, J.M. Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America. Remote Sens. Environ 2007, 109, 81–94. [Google Scholar]
- Sprintsin, M.; Karnielli, A.; Berliner, P.; Rotenberg, E.; Yakir, D.; Cohen, S. The effect of spatial resolution on the accuracy of leaf area index estimation for a forest planted in the desert transition zone. Remote Sens. Environ 2007, 109, 416–428. [Google Scholar]
- Blümel, B.; Reimer, E. Validation of boundary layer parameters of climate model REMO: estimation of leaf area index from NOAA-AVHRR data from the Baltimos region. Theor. Appl. Climatol 2009. [Google Scholar] [CrossRef]
- Propastin, P.; Erasmi, S. A physically based approach to model LAI from MODIS 250 m data in a tropical region. Int. J. Appl. Earth Obs. Geoinf 2010, 12, 47–59. [Google Scholar]
- Lal, R. Carbon sequestration in soils of Central Asia. Land Degrad. Dev 2004, 15, 563–572. [Google Scholar]
- Laca, E.A.; McEarchern, M.B.; Demment, M.W. Global grazing lands and greenhouse gas fluxes. Rangeland Ecol. Manag 2010, 63, 1–3. [Google Scholar]
- Henebry, G.M. Carbon in idle croplands. Nature 2009, 457, 1089–1090. [Google Scholar]
- Propastin, P.; Kappas, M. Modelling net ecosystem exchange for grassland in Central Kazakhstan by combining remote sensing and field data. Remote Sens 2009, 1, 159–183. [Google Scholar]
- Propastin, P.; Kappas, M.; Herrmann, S.; Tucker, C. Modified light use efficiency model for assessment of carbon sequestration in grasslands of Kazakhstan: Combining ground biomass data and remote sensing. Int. J. Remote Sens 2011, 33, 1465–1487. [Google Scholar]
- Causarano, H.J.; Doraiswamy, P.C.; Muratova, N.; Pachikin, K.; McCarty, G.W.; Akhmetov, B.; Williams, J.R. Improved modelling of soil organic carbon in a semi-arid region of Central East Kazakhstan using EPIC. Agron. Sustain. Dev 2010, 30. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M. Mapping Leaf Area Index in a semi-arid environment of Kazakshtan using fine-resolution satellite data and in situ measurements. GISci. Remote Sens 2009, 46, 231–246. [Google Scholar]
- Propastin, P.; Kappas, M. Mapping leaf area index over semi-desert and steppe biomes in Kazakhstan using satellite imagery and ground measurements. EARSeL eProc 2009, 8, 75–92. [Google Scholar]
- Propastin, P.; Kappas, M. Comparison of MODIS products with in situ measurements of LAI and fPAR in temperate grassland of Kazakhstan. Int. J. Dig. Earth 2011. submitted. [Google Scholar]
- McCoy, R.M. Field Methods in Remote Sensing; The Guildford Press: New York, NY, USA, 2005. [Google Scholar]
- REGENT INSTRUMENTS. Available online: http://www.regentinstruments.com (accessed on 30 November 2011).
- INRA. CAN-EYE v6.2. Available online: https://www4.paca.inra.fr/can-eye (accessed on 30 November 2011).
- Lang, A.R.; Xiang, Y. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agr. Forest Meteorol 1986, 35, 229–243. [Google Scholar]
- Tyurmenco, A.N. Biologitcheskiy krugovorot zolnych elementov pod celinnoy i culturnoy rastitelnostyu w zone sukhich i polupustynnych stepey. In Genesis, swoystwa i plodorodiye potchw; (In Russian). Kazan’; Izdatel’stvo Kazanskogo Universiteta, 1975; pp. 135–176. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parametrization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interact 2000, 4, 1–85. [Google Scholar]
- Pinzon, J.E.; Brown, M.E.; Tucker, C.J. Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR 8-km Normalized Difference Vegetation Index (NDVI) Data Set. Product Guide. 2004. Available online: http://landcover.org/library/guide/GIMMSdocumentation_NDVIg_8km_rev4.pdf (accessed on 2 April 2011).
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 1986, 7, 1417–1434. [Google Scholar]
- Los, S.O.; Collatz, G.J.; Sellers, P.J.; Malmström, C.M.; Pollack, N.H.; DeFries, R.S.; Bounoua, L.; Parris, M.T.; Tucker, C.J.; Dazlich, D.A. A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor 2000, 1, 183–199. [Google Scholar]
- Landsat archive. Available online: http://glovis.usgs.gov/ (accessed on 30 November 2011).
- Fallah-Adl, H.; Jaja, J.; Liang, S. Fast algorithms for estimating aerosol optical depth and correcting Thematic Mapper (TM) imagery. J. Supercomput 1997, 10, 300–315. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens 1982, 8, 84–106. [Google Scholar]
- DeFries, R.S.; Hansen, M.; Townshend, R.J.G.; Sohlberg, R. Global land cover classification at 8-km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens 1998, 19, 3141–3168. [Google Scholar]
- Global Land Cover Facility Archive Centre. Available online: http://www.landcover.org/data/landcover/data.shtml (accessed n 30 November 2011).
- Norman, J.M.; Campbell, S.G. Canopy structure. In Plant Physiological Ecology. Field Methods and Instrumentation; Pearcy, R., Ehleringer, J.R., Mooney, H.A., Rundel, P.W., Eds.; Chapman and Hall: London, UK, 1989; pp. 301–325. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens 1998, 19, 1533–1543. [Google Scholar]
- Wittich, K.P. Some simple relationships between land-surface emissivity, greenness and the plant cover fraction for use in satellite remote sensing. Int. J. Biometeorol 1997, 38, 58–64. [Google Scholar]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modelling. J. Appl. Meteorol 2000, 39, 826–839. [Google Scholar]
- Zeng, X.; Rao, P.; DeFries, R.S.; Hansen, M.C. Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000. J. Appl. Meteorol 2003, 42, 1525–1530. [Google Scholar]
- Choundry, B.J.; Ahmed, N.U.; Idso, S.B.; Riganto, R.J.; Doughtry, C.S.T. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ 1994, 50, 1–17. [Google Scholar]
- Jarvis, P.G.; Laverenz, J.W. Productivity of temperate, deciduous and evergreen forests. In Physiological Plant Ecology IV; Lange, O.L., Omond, C.B., Zeigler, H., Eds.; Srpinger-Verlag: New York, NY, USA, 1983; pp. 133–144. [Google Scholar]
- Jones, H.G. Plant and microclimate, 2nd Ed. edCambrige University Press: Cambrige, UK, 1992. [Google Scholar]
- Wang, Y.P.; Jarvis, G.P. Mean leaf angles for ellipsoidal inclination distribution. Agr. Forest Meteorol 1988, 43, 319–321. [Google Scholar]
- Kucharik, C.J.; Norman, J.M.; Gower, S.T. Characterization of radiation regimes in non-random forest canopies: Theory, measurements, and simplified modelling approach. Tree Physiol 1998, 19, 695–706. [Google Scholar]
- US Geological Survey, EROS Data Center. Global 30 Arc Second Elevation Data Set (GTOPO30). 1998. Available online: http://www1.gsi.go.jp/geowww/globalmap-gsi/gtopo30/gtopo30.html (accessed on 30 November 2011).
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G.; et al. Validation of global moderate resolution LAI Products: A framework proposed within the CEOS Land Product Validation subgroup. IEEE Trans. Geosci. Remote Sens 2006, 44, 1804–1817. [Google Scholar]
- Atkinson, P.; Tate, N. Spatial scale problems and geostatistical solutions: A review. Prof. Geogr 2000, 52, 607–623. [Google Scholar]
- Earth Observing System Data Gateway. Available online: http://edcimswww.cr.usgs.gov/pub/imswelcome/ (accessed on 30 November 2011).
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ 1988, 25, 295–309. [Google Scholar]
- Shabanov, N.V.; Kotchenova, S.; Huang, D.; Yang, W.; Tan, B.; Knyazikhin, Y.; et al. Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Trans. Geosci. Remote Sens 2005, 43, 1855–1865. [Google Scholar]
Test Site and Number of Sampling Plots | Date | Vegetation Type | Measurement Method | LAI Range |
---|---|---|---|---|
Shetsky 1, 14 plots | June 2004 | Grassland | Direct contact destructive | 0.25–1.12 |
Cropland | 0.31–0.85 | |||
Shetsky 2, 20 plots | June 2008 | Grassland | Indirect non-contact optical | 0.30–1.55 |
Cropland | 0.21–0.75 | |||
Shrubland | 0.84–2.06 | |||
Almaty, 16 plots | June 2008 | Mixed forest | Indirect non-contact optical | 3.30–5.90 |
Deciduous broadleaf forest | 3.10–5.10 | |||
Deciduous needleaf forest | 4.35–7.24 | |||
Woodland | 2.42–4.10 |
Location Name/Test Site | Scene Date | Landsat Path/Row |
---|---|---|
Shetsky 1 | June 16 2004 | 153/26 |
153/27 | ||
Shetsky 2 | June 19 2008 | 153/26 |
Almaty | July 30 2008 | 149/30 |
Share and Cite
Propastin, P.; Kappas, M. Retrieval of Coarse-Resolution Leaf Area Index over the Republic of Kazakhstan Using NOAA AVHRR Satellite Data and Ground Measurements. Remote Sens. 2012, 4, 220-246. https://doi.org/10.3390/rs4010220
Propastin P, Kappas M. Retrieval of Coarse-Resolution Leaf Area Index over the Republic of Kazakhstan Using NOAA AVHRR Satellite Data and Ground Measurements. Remote Sensing. 2012; 4(1):220-246. https://doi.org/10.3390/rs4010220
Chicago/Turabian StylePropastin, Pavel, and Martin Kappas. 2012. "Retrieval of Coarse-Resolution Leaf Area Index over the Republic of Kazakhstan Using NOAA AVHRR Satellite Data and Ground Measurements" Remote Sensing 4, no. 1: 220-246. https://doi.org/10.3390/rs4010220
APA StylePropastin, P., & Kappas, M. (2012). Retrieval of Coarse-Resolution Leaf Area Index over the Republic of Kazakhstan Using NOAA AVHRR Satellite Data and Ground Measurements. Remote Sensing, 4(1), 220-246. https://doi.org/10.3390/rs4010220