Radiation Anomaly Detection of Sub-Band Optical Remote Sensing Images Based on Multiscale Deep Dynamic Fusion and Adaptive Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Introduction
2.2. Infrastructure Network Architecture
2.3. Overall FlexVisionNet-YOLO Network Structure
2.4. Multiscale Multibranching Feature Extraction Network
2.5. Dynamic Deep Feature Fusion Networks
2.6. Inner-CIoU Loss and Slide Loss Function
3. Experiment and Result Analysis
3.1. Experimental Environment Setting and Evaluation Metrics
3.2. Analysis of Experimental Results of Different Models
3.3. Analysis of Ablation Experiment Results
3.4. Analysis of Inner-CIoU and Slide-Loss Experiment Results
3.5. Quantitative Analysis and Comparison of the Performance of Each Category
3.6. Analysis of FlexVisionNet-YOLO Performance in Real Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Zhou, Q.; Li, Q.; Hu, S.; Shi, T.; Wu, G. Determining switching threshold for NIR-SWIR combined atmospheric correction algorithm of ocean color remote sensing. ISPRS J. Photogramm. Remote Sens. 2019, 153, 59–73. [Google Scholar] [CrossRef]
- XiaGS, B. DOTA: ALarge-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Requena-Mesa, C.; Benson, V.; Reichstein, M.; Runge, J.; Denzler, J. EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1132–1142. [Google Scholar]
- Xiong, Z.; Zhang, F.; Wang, Y.; Shi, Y.; Zhu, X.X. Earthnets: Empowering ai in earth observation. arXiv 2022, arXiv:2210.04936. [Google Scholar]
- Wang, L.; Bi, J.; Meng, X.; Geng, G.; Huang, K.; Li, J.; Tang, L.; Liu, Y. Satellite-based assessment of the long-term efficacy of PM2. 5 pollution control policies across the Taiwan Strait. Remote Sens. Environ. 2020, 251, 112067. [Google Scholar] [CrossRef]
- Tayara, H.; Chong, K.T. Object detection in very high-resolution aerial images using one-stage densely connected feature pyramid network. Sensors 2018, 18, 3341. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Zalpour, M.; Akbarizadeh, G.; Alaei-Sheini, N. A new approach for oil tank detection using deep learning features with control false alarm rate in high-resolution satellite imagery. Int. J. Remote Sens. 2020, 41, 2239–2262. [Google Scholar] [CrossRef]
- Xu, D.; Wu, Y. Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection. Sensors 2020, 20, 4276. [Google Scholar] [CrossRef]
- Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time detection of steel strip surface defects based on improved yolo detection network. IFAC-PapersOnLine 2018, 51, 76–81. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Wan, Z. Surface defect detection of steel strips based on improved YOLOv4. Comput. Electr. Eng. 2022, 102, 108208. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Yang, Z.; Zhang, J.; Li, X. Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition. IEEE Trans. Semicond. Manuf. 2020, 33, 587–596. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W. A new steel defect detection algorithm based on deep learning. Comput. Intell. Neurosci. 2021, 2021, 5592878. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, D.; Yang, X.; Xu, B.; Yang, G. Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and improved maximum entropy segmentation algorithms. Remote Sens. 2018, 10, 246. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Kefauver, S.C.; Gutiérrez, N.A.; Nieto-Taladriz, M.T.; Araus, J.L. Wheat ear counting in-field conditions: High throughput and low-cost approach using RGB images. Plant Methods 2018, 14, 22. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Vilaplana, V.; Rosell-Polo, J.R.; Morros, J.-R.; Ruiz-Hidalgo, J.; Gregorio, E. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their Radiation capabilities. Comput. Electron. Agric. 2019, 162, 689–698. [Google Scholar] [CrossRef]
- Tu, S.; Xue, Y.; Zheng, C.; Qi, Y.; Wan, H.; Mao, L. Detection of passion fruits and maturity classification using Red-Green-Blue Depth images. Biosyst. Eng. 2018, 175, 156–167. [Google Scholar] [CrossRef]
- Tu, S.; Pang, J.; Liu, H.; Zhuang, N.; Chen, Y.; Zheng, C.; Wan, H.; Xue, Y. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images. Precis. Agric. 2020, 21, 1072–1091. [Google Scholar] [CrossRef]
- Li, W. Vehicle detection in foggy weather based on an enhanced YOLO method. J. Phys. Conf. Ser. 2022, 2284, 012015. [Google Scholar] [CrossRef]
- Li, Y.; Yin, C.; Lei, Y.; Zhang, J.; Yan, Y. RDD-YOLO: Road Damage Detection Algorithm Based on Improved You Only Look Once Version 8. Appl. Sci. 2024, 14, 3360. [Google Scholar] [CrossRef]
- Dong, H.; Song, K.; He, Y.; Xu, J.; Yan, Y.; Meng, Q. PGA-Net: Pyramid feature fusion and global context attention network for automated surface defect detection. IEEE Trans. Ind. Inform. 2019, 16, 7448–7458. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, Z.; Xu, X.; Wu, J.; Zhu, J.; Zhang, H.; Wang, J.; Tian, Y. Road damage detection using UAV images based on multi-level attention mechanism. Autom. Constr. 2022, 144, 104613. [Google Scholar] [CrossRef]
- Su, P.; Han, H.; Liu, M.; Yang, T.; Liu, S. MOD-YOLO: Rethinking the YOLO architecture at the level of feature information and applying it to crack detection. Expert Syst. Appl. 2024, 237, 121346. [Google Scholar] [CrossRef]
- Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. Int. J. Comput. Vis. 2020, 128, 642–656. [Google Scholar] [CrossRef]
- Nie, X.; Duan, M.; Ding, H.; Hu, B.; Wong, E.K. Attention Mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 2020, 8, 9325–9334. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Li, Y.; Peng, C.; Chen, Y.; Jiao, L.; Zhou, L.; Shang, R. A Deep Learning Method for Change Detection in Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5751–5763. [Google Scholar] [CrossRef]
- Quanzhi, A.; Zongxu, P.; Hongjian, Y. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network. Sensors 2018, 18, 334. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery. Remote Sens. 2019, 11, 531. [Google Scholar] [CrossRef]
- Li, J.; Tian, Y.; Xu, Y.; Zhang, Z. Oriented object detection in remote sensing images with anchor-free oriented region proposal network. Remote Sens. 2022, 14, 1246. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object. arXiv 2019, arXiv:1908.05612. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Z.; Qiu, Z.; Zhang, Q.; Hu, Z. Calibration and validation of ZY-3 optical sensors. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4616–4626. [Google Scholar] [CrossRef]
- Chunling, L.; Zhaoguang, B. Characteristics and typical applications of GF-1 satellite. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1246–1249. [Google Scholar]
- Huang, W.; Sun, S.; Jiang, H.; Gao, C.; Zong, X. GF-2 Satellite 1m/4m Camera Design and In-Orbit Commissioning. Chin. J. Electron. 2018, 27, 1316–1321. [Google Scholar] [CrossRef]
- Zhou, S.; Pan, H.; Huang, T.; Zhou, P. High Accuracy Georeferencing of GF-6 Wide Field of View Scenes towards Analysis Ready Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5614512. [Google Scholar] [CrossRef]
- Tang, X.; Xie, J.; Liu, R.; Huang, G.; Zhao, C.; Zhen, Y.; Tang, H.; Dou, X. Overview of the GF-7 laser altimeter system mission. Earth Space Sci. 2020, 7, e2019EA000777. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Lin, Z.; Han, J.; Ding, G. RepViT: Revisiting mobile cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 15909–15920. [Google Scholar]
- Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. Yolo-facev2: A scale and occlusion aware face detector. Pattern Recognit. 2024, 155, 110714. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, C.; Zhang, S. Inner-iou: More effective intersection over union loss with auxiliary bounding box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
Name | Parameter Setting |
---|---|
Lr0 | 0.001 |
Lrf | 0.001 |
Momentum | 0.927 |
Epoches | 700 |
Batch_Size | 16 |
Dfl | 0.8 |
Patience | 150 |
Cls | 1 |
Optimizer | SGD |
lr0 | lrf | P | R | [email protected] | [email protected]:0.9 |
---|---|---|---|---|---|
0.01 | 0.01 | 0.921 | 0.931 | 0.942 | 0.876 |
0.001 | 0.005 | 0.924 | 0.934 | 0.936 | 0.887 |
0.001 | 0.001 | 0.982 | 0.952 | 0.973 | 0.901 |
Model | P | R | [email protected] | [email protected]:0.9 |
---|---|---|---|---|
SSD | 0.684 | 0.662 | 0.67 | 0.61 |
Faster R-CNN | 0.814 | 0.784 | 0.704 | 0.68 |
Yolov5 | 0.844 | 0.756 | 0.752 | 0.73 |
Yolov6 | 0.832 | 0.74 | 0.76 | 0.72 |
Yolov7 | 0.864 | 0.762 | 0.81 | 0.74 |
Yolov8 | 0.947 | 0.881 | 0.929 | 0.765 |
FlexVisionNet-YOLO | 0.982 | 0.952 | 0.973 | 0.901 |
Methods | RepViT | SDI | Dy_Sample | ReViT+SDI | SDI+Dy_Sample | Inner-CIoU+Slide | P | R | [email protected] | Time (ms) |
---|---|---|---|---|---|---|---|---|---|---|
Yolov8(basline) | - | - | - | - | - | - | 0.947 | 0.881 | 0.929 | 5.8 |
Method(1) | ✓ | - | - | - | - | - | 0.944 | 0.901 | 0.945 | 2.3 |
Method(2) | - | ✓ | - | - | - | - | 0.95 | 0.911 | 0.93 | 7.6 |
Method(3) | - | - | ✓ | - | - | - | 0.94 | 0.904 | 0.934 | 5.4 |
Method(4) | - | - | - | ✓ | - | 0.954 | 0.912 | 0.936 | 5.8 | |
Method(5) | - | - | - | - | ✓ | - | 0.944 | 0.906 | 0.928 | 8.3 |
Method(6) | - | - | - | - | - | ✓ | 0.962 | 0.934 | 0.941 | 5.5 |
FlexVisionNet-YOLO | ✓ | ✓ | ✓ | - | - | ✓ | 0.982 | 0.952 | 0.973 | 3.7 |
Model | Class | Image-Missing | Tap | RandomCode1 | CCD | StripeNoise | RandomCode2 |
---|---|---|---|---|---|---|---|
Yolov8 | P | 0.934 | 0.982 | 0.914 | 0.956 | 0.935 | 0.964 |
Yolov8 | R | 0.8 | 0.964 | 0.792 | 0.842 | 0.964 | 0.962 |
Yolov8 | [email protected] | 0.897 | 0.975 | 0.875 | 0.87 | 0.964 | 0.987 |
Yolov8 | [email protected]:0.9 | 0.729 | 0.923 | 0.633 | 0.701 | 0.705 | 0.902 |
FlexVisionNet-YOLO | P | 0.993 | 0.997 | 0.965 | 0.986 | 0.97 | 0.997 |
FlexVisionNet-YOLO | R | 0.836 | 0.997 | 0.0.939 | 0.967 | 0.994 | 0.992 |
FlexVisionNet-YOLO | [email protected] | 0.917 | 0.995 | 0.965 | 0.982 | 0.994 | 0.994 |
FlexVisionNet-YOLO | [email protected]:0.9 | 0.875 | 0.99 | 0.834 | 0.816 | 0.969 | 0.934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ci, J.; Tan, H.; Zhai, H.; Tang, X. Radiation Anomaly Detection of Sub-Band Optical Remote Sensing Images Based on Multiscale Deep Dynamic Fusion and Adaptive Optimization. Remote Sens. 2024, 16, 2953. https://doi.org/10.3390/rs16162953
Ci J, Tan H, Zhai H, Tang X. Radiation Anomaly Detection of Sub-Band Optical Remote Sensing Images Based on Multiscale Deep Dynamic Fusion and Adaptive Optimization. Remote Sensing. 2024; 16(16):2953. https://doi.org/10.3390/rs16162953
Chicago/Turabian StyleCi, Jinlong, Hai Tan, Haoran Zhai, and Xinming Tang. 2024. "Radiation Anomaly Detection of Sub-Band Optical Remote Sensing Images Based on Multiscale Deep Dynamic Fusion and Adaptive Optimization" Remote Sensing 16, no. 16: 2953. https://doi.org/10.3390/rs16162953
APA StyleCi, J., Tan, H., Zhai, H., & Tang, X. (2024). Radiation Anomaly Detection of Sub-Band Optical Remote Sensing Images Based on Multiscale Deep Dynamic Fusion and Adaptive Optimization. Remote Sensing, 16(16), 2953. https://doi.org/10.3390/rs16162953