Regulatory Effect Evaluation of Warming and Cooling Factors on Urban Land Surface Temperature Based on Multi-Source Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. LST Inversion
2.4. Regulating Factors Selection and Extraction
2.4.1. Regulating Factors Selection
2.4.2. ISA and UGS Components Extraction
2.4.3. AHF Estimation
2.4.4. Spatial Simulation of Resident Population
2.4.5. Land Surface Albedo Calculation
2.4.6. Landscape Pattern Calculation
2.4.7. UGS Shading Index Estimation
2.4.8. ET Inversion
2.5. GWR
2.6. Bivariate Spatial Autocorrelation
2.7. Geographical Detector
3. Results
3.1. Inversion Results of LST and Regulatory Factors
3.2. GWR Results
3.3. Bivariate Spatial Autocorrelation Results
3.4. Geographical Detector Results
3.4.1. Factor Detection
3.4.2. Interaction Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Criterion | Interaction Type |
---|---|
Nonlinear Attenuation | |
Single Factor Nonlinear Attenuation | |
Double Factor Enhancement | |
Independence | |
Nonlinear Enhancement |
References
- Stehfest, E.; van Zeist, W.-J.; Valin, H.; Havlik, P.; Popp, A.; Kyle, P.; Tabeau, A.; Mason-D’Croz, D.; Hasegawa, T.; Bodirsky, B.L.; et al. Key Determinants of Global Land-Use Projections. Nat. Commun. 2019, 10, 2166. [Google Scholar] [CrossRef] [PubMed]
- Donateo, A.; Palusci, O.; Pappaccogli, G.; Esposito, A.; Martilli, A.; Santiago, J.L.; Buccolieri, R. Analysis of Urban Heat Island and Human Thermal Comfort in a Mediterranean City: A Case Study of Lecce (Italy). Sustain. Cities Soc. 2023, 98, 104849. [Google Scholar] [CrossRef]
- Ouyang, Z.; Sciusco, P.; Jiao, T.; Feron, S.; Lei, C.; Li, F.; John, R.; Fan, P.; Li, X.; Williams, C.A.; et al. Albedo Changes Caused by Future Urbanization Contribute to Global Warming. Nat. Commun. 2022, 13, 3800. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, Y.; Tan, X.; Zhao, L.; Cai, Y.; Li, L. Assessing the Urban Heat Island Effect of Different Local Climate Zones in Guangzhou, China. Build. Environ. 2023, 244, 110770. [Google Scholar] [CrossRef]
- Singh, M.; Sharston, R. Quantifying the Dualistic Nature of Urban Heat Island Effect (UHI) on Building Energy Consumption. Energy Build. 2022, 255, 111649. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, F.; Liu, H.; Qiao, Z. Towards Low Carbon Cities: A Machine Learning Method for Predicting Urban Blocks Carbon Emissions (UBCE) Based on Built Environment Factors (BEF) in Changxing City, China. Sustain. Cities Soc. 2021, 69, 102875. [Google Scholar] [CrossRef]
- Liang, Z.; Huang, J.; Wang, Y.; Wei, F.; Wu, S.; Jiang, H.; Zhang, X.; Li, S. The Mediating Effect of Air Pollution in the Impacts of Urban Form on Nighttime Urban Heat Island Intensity. Sustain. Cities Soc. 2021, 74, 102985. [Google Scholar] [CrossRef]
- Ellena, M.; Melis, G.; Zengarini, N.; Di Gangi, E.; Ricciardi, G.; Mercogliano, P.; Costa, G. Micro-Scale UHI Risk Assessment on the Heat-Health Nexus within Cities by Looking at Socio-Economic Factors and Built Environment Characteristics: The Turin Case Study (Italy). Urban Clim. 2023, 49, 101514. [Google Scholar] [CrossRef]
- Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C.; Li, X.; Wang, S. Exploring Thermal Comfort of Urban Buildings Based on Local Climate Zones. J. Clean. Prod. 2022, 340, 130744. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban Heat Island Impacts on Building Energy Consumption: A Review of Approaches and Findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Xi, C.; Han, L.; Wang, J.; Feng, Z.; Kumar, P.; Cao, S.-J. How Can Greenery Space Mitigate Urban Heat Island? An Analysis of Cooling Effect, Carbon Sequestration, and Nurturing Cost at the Street Scale. J. Clean. Prod. 2023, 419, 138230. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings—A Review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Gober, P.; Brazel, A.; Quay, R.; Myint, S.; Grossman-Clarke, S.; Miller, A.; Rossi, S. Using Watered Landscapes to Manipulate Urban Heat Island Effects: How Much Water Will It Take to Cool Phoenix? J. Am. Plan. Assoc. 2009, 76, 109–121. [Google Scholar] [CrossRef]
- Garuma, G.F. Tropical Surface Urban Heat Islands in East Africa. Sci. Rep. 2023, 13, 4509. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Chen, D.; Liu, H.; Ding, W.; Shi, S. A New Global Gridded Anthropogenic Heat Flux Dataset with High Spatial Resolution and Long-Term Time Series. Sci. Data 2019, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.J.; Cai, M.; Hu, A. Energy Consumption and the Unexplained Winter Warming over Northern Asia and North America. Nat. Clim. Chang. 2013, 3, 466–470. [Google Scholar] [CrossRef]
- Ichinose, T.; Shimodozono, K.; Hanaki, K. Impact of Anthropogenic Heat on Urban Climate in Tokyo. Atmos. Environ. 1999, 33, 3897–3909. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, X.; Chen, Y.; Dai, W.; Wang, X. Numerical Simulations on Influence of Urban Land Cover Expansion and Anthropogenic Heat Release on Urban Meteorological Environment in Pearl River Delta. Theor. Appl. Climatol. 2016, 126, 469–479. [Google Scholar] [CrossRef]
- Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the Impact of Urban Green Space on the Urban Heat Island Effect among Different Urban Functional Zones: A Case Study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Bao, Y. Cool Island Effects of Urban Remnant Natural Mountains for Cooling Communities: A Case Study of Guiyang, China. Sustain. Cities Soc. 2021, 71, 102983. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.W.D.K.C.; Adegun, O.B.; Balogun, A.A. Modelling the Effect of Tree-Shading on Summer Indoor and Outdoor Thermal Condition of Two Similar Buildings in a Nigerian University. Energy Build. 2016, 130, 721–732. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The Effect of Tree Shade and Grass on Surface and Globe Temperatures in an Urban Area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Yu, Q.; Ji, W.; Pu, R.; Landry, S.; Acheampong, M.; O’ Neil-Dunne, J.; Ren, Z.; Tanim, S.H. A Preliminary Exploration of the Cooling Effect of Tree Shade in Urban Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102161. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, Y.; Wang, Y.; Chen, L.; Qin, K.; Yang, X. Effect of Landscape Pattern of Urban Surface Evapotranspiration on Land Surface Temperature. Urban Clim. 2023, 49, 101540. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Ding, N.; Qin, K.; Yang, X. Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sens. 2020, 12, 578. [Google Scholar] [CrossRef]
- Li, J.; Sun, R.; Liu, T.; Xie, W.; Chen, L. Prediction Models of Urban Heat Island Based on Landscape Patterns and Anthropogenic Heat Dynamics. Landsc. Ecol. 2021, 36, 1801–1815. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N. Spatial Effects of Landscape Patterns of Urban Patches with Different Vegetation Fractions on Urban Thermal Environment. Remote Sens. 2022, 14, 5684. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Spatial Pattern Impact of Impervious Surface Density on Urban Heat Island Effect: A Case Study in Xuzhou, China. Land 2022, 11, 2135. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Zhou, Y.; Liu, D.; Wang, H. The Dominant Factors and Influence of Urban Characteristics on Land Surface Temperature Using Random Forest Algorithm. Sustain. Cities Soc. 2022, 79, 103722. [Google Scholar] [CrossRef]
- Song, Z.; Yang, H.; Huang, X.; Yu, W.; Huang, J.; Ma, M. The Spatiotemporal Pattern and Influencing Factors of Land Surface Temperature Change in China from 2003 to 2019. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102537. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- United States Geographic Survey (USGS). Available online: https://www.usgs.gov/ (accessed on 2 January 2023).
- Earth Observation Group (EOG). Available online: https://eogdata.mines.edu/products/vnl/ (accessed on 20 February 2023).
- Level 1 and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC). Available online: https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD15A2H (accessed on 2 January 2023).
- China Centre for Resource Satellite Data and Application (CASC). Available online: https://data.cresda.cn/ (accessed on 15 January 2023).
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Montanaro, M.; Lunsford, A.; Tesfaye, Z.; Wenny, B.; Reuter, D. Radiometric Calibration Methodology of the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 6, 8803–8821. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Chen, L.; Liao, Z.; Wang, Y.; Wang, B.; Yang, X. A Modified Multi-Source Parallel Model for Estimating Urban Surface Evapotranspiration Based on ASTER Thermal Infrared Data. Remote Sens. 2017, 9, 1029. [Google Scholar] [CrossRef]
- Cecilia, A.; Casasanta, G.; Petenko, I.; Conidi, A.; Argentini, S. Measuring the Urban Heat Island of Rome through a Dense Weather Station Network and Remote Sensing Imperviousness Data. Urban Clim. 2023, 47, 101355. [Google Scholar] [CrossRef]
- Khamchiangta, D.; Dhakal, S. Physical and Non-Physical Factors Driving Urban Heat Island: Case of Bangkok Metropolitan Administration, Thailand. J. Environ. Manage. 2019, 248, 109285. [Google Scholar] [CrossRef]
- Hu, L.; Wilhelmi, O.V.; Uejio, C. Assessment of Heat Exposure in Cities: Combining the Dynamics of Temperature and Population. Sci. Total Environ. 2019, 655, 1–12. [Google Scholar] [CrossRef]
- Vahmani, P.; Jones, A.D.; Patricola, C.M. Interacting Implications of Climate Change, Population Dynamics, and Urban Heat Mitigation for Future Exposure to Heat Extremes. Environ. Res. Lett. 2019, 14, 084051. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface Anthropogenic Heat Islands in Six Megacities: An Assessment Based on a Triple-Source Surface Energy Balance Model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
- Gage, E.A.; Cooper, D.J. Relationships between Landscape Pattern Metrics, Vertical Structure and Surface Urban Heat Island Formation in a Colorado Suburb. Urban Ecosyst. 2017, 20, 1229–1238. [Google Scholar] [CrossRef]
- Hou, H.; Estoque, R.C. Detecting Cooling Effect of Landscape from Composition and Configuration: An Urban Heat Island Study on Hangzhou. Urban For. Urban Green. 2020, 53, 126719. [Google Scholar] [CrossRef]
- Gan, X.; Zhang, Y.; Wu, Z.; Wang, Y.; Han, H.; Yang, X. Spatial Characteristics of Urban Evapotranspiration Effects on the Thermal Environment. J. Water Clim. Chang. 2023, 14, 2103–2121. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Wang, S.; Gao, X. Assessing the Effects of Urban Green Landscape on Urban Thermal Environment Dynamic in a Semiarid City by Integrated Use of Airborne Data, Satellite Imagery and Land Surface Model. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102674. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Lyu, S.; Liu, Y.; Pan, Y. Response of Surface Air Temperature to the Change of Leaf Area Index in the Source Region of the Yellow River by the WRF Model. Theor. Appl. Climatol. 2019, 138, 1755–1765. [Google Scholar] [CrossRef]
- Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M.; Sun, Q. (Chayn) Revisiting the Cooling Effects of Urban Greening: Planning Implications of Vegetation Types and Spatial Configuration. Urban For. Urban Green. 2021, 64, 127266. [Google Scholar] [CrossRef]
- Zaitunah, A.; Samsuri, S.; Silitonga, A.F.; Syaufina, L. Urban Greening Effect on Land Surface Temperature. Sensors 2022, 22, 4168. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Assessing the Contributions of Urban Green Space Indices and Spatial Structure in Mitigating Urban Thermal Environment. Remote Sens. 2023, 15, 2414. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Caspersen, J. Fully Constrained Linear Spectral Unmixing Based Global Shadow Compensation for High Resolution Satellite Imagery of Urban Areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 88–98. [Google Scholar] [CrossRef]
- Li, L.; Canters, F.; Solana, C.; Ma, W.; Chen, L.; Kervyn, M. Discriminating Lava Flows of Different Age within Nyamuragira’s Volcanic Field Using Spectral Mixture Analysis. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 1–10. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. Analyzing Parcel-Level Relationships between Luojia 1-01 Nighttime Light Intensity and Artificial Surface Features across Shanghai, China: A Comparison with NPP-VIIRS Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101989. [Google Scholar] [CrossRef]
- Dong, Y.; Varquez, A.C.G.; Kanda, M. Global Anthropogenic Heat Flux Database with High Spatial Resolution. Atmos. Environ. 2017, 150, 276–294. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Wu, J. Simulation of the Urban Climate in a Chinese Megacity with Spatially Heterogeneous Anthropogenic Heat Data. J. Geophys. Res. 2016, 121, 5193–5212. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The Vegetation Adjusted NTL Urban Index: A New Approach to Reduce Saturation and Increase Variation in Nighttime Luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D. Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data. Remote Sens. 2017, 9, 1165. [Google Scholar] [CrossRef]
- Huang, W.; Cui, L.; Chen, M.; Zhang, D.; Yao, Y. Estimating Urban Functional Distributions with Semantics Preserved POI Embedding. Int. J. Geogr. Inf. Sci. 2022, 36, 1905–1930. [Google Scholar] [CrossRef]
- He, B.; Hu, J.; Liu, K.; Xue, J.; Ning, L.; Fan, J. Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China. Remote Sens. 2022, 14, 499. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to Broadband Conversions of Land Surface Albedo I. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Deng, F.; Zhang, Y.; Liu, D.; Liu, C.; Gao, Z. A High-Resolution Monitoring Approach of Canopy Urban Heat Island Using a Random Forest Model and Multi-Platform Observations. Atmos. Meas. Tech. 2022, 15, 735–756. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, F. Effects of Changing Spatial Extent on the Relationship between Urban Forest Patterns and Land Surface Temperature. Ecol. Indic. 2020, 109, 105778. [Google Scholar] [CrossRef]
- Song, J.; Chen, W.; Zhang, J.; Huang, K.; Hou, B.; Prishchepov, A.V. Effects of Building Density on Land Surface Temperature in China: Spatial Patterns and Determinants. Landsc. Urban Plan. 2020, 198, 103794. [Google Scholar] [CrossRef]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Zhang, Y. Quantifying and Simulating Landscape Composition and Pattern Impacts on Land Surface Temperature: A Decadal Study of the Rapidly Urbanizing City of Beijing, China. Sci. Total Environ. 2019, 654, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying Landscape-Metrics Impacts on Urban Green-Spaces and Water-Bodies Cooling Effect: The Study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Fei, Y.; Jiulin, S.; Hongliang, F.; Zuofang, Y.; Jiahua, Z.; Yunqiang, Z.; Kaishan, S.; Zongming, W.; Maogui, H. Comparison of Different Methods for Corn LAI Estimation over Northeastern China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 462–471. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Qin, K.; Wang, Y.; Chen, L.; Yang, X. Remote Sensing Estimation of Urban Surface Evapotranspiration Based on a Modified Penman–Monteith Model. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Mohammadi, M.; Egli, M.; Kavian, A.; Lizaga, I. Static and Dynamic Source Identification of Trace Elements in River and Soil Environments under Anthropogenic Activities in the Haraz Plain, Northern Iran. Sci. Total Environ. 2023, 892, 164432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the Spatial Relationship between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Schmid, H.P. Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective. Agric. For. Meteorol. 2002, 113, 159–183. [Google Scholar] [CrossRef]
- Stache, E.; Schilperoort, B.; Ottelé, M.; Jonkers, H.M. Comparative Analysis in Thermal Behaviour of Common Urban Building Materials and Vegetation and Consequences for Urban Heat Island Effect. Build. Environ. 2022, 213, 108489. [Google Scholar] [CrossRef]
Data Source | Spatial Resulation | Data | Acquisition Date |
---|---|---|---|
Landsat 8 | OLI: 30 m TIRS: 100 m | LC81210362014121LGN00 (Cloud Cover: 0.88%) | 1 May 2014 (Local Time: 10:42:29) |
LC81220362016278LGN00 (Cloud Cover: 1.23%) | 4 October 2016 (Local Time: 10:49:11) | ||
LC81220362017136LGN00 (Cloud Cover: 0.41%) | 16 May 2017 (Local Time: 10:48:22) | ||
LC81220362018123LGN00 (Cloud Cover: 0.14%) | 3 May 2018 (Local Time: 10:48:04) | ||
NPP VIIRS NTL | 500 m | SVDNB_npp_20140501-20140531_75N060E_vcmcfg_v10_c201502061154 | May 2014 |
SVDNB_npp_20161001-20161031_75N060E_vcmcfg_v10_c201612011122 | October 2016 | ||
SVDNB_npp_20170501-20170531_75N060E_vcmcfg_v10_c201706021500 | May 2017 | ||
SVDNB_npp_20180501-20180531_75N060E_vcmcfg_v10_c201806061100 | May 2018 | ||
MOD13A1 | 500 m | MOD13A1.A2014129.h27v05.006.2015281104645 | 9 May 2014 |
MOD13A1.A2016273.h27v05.006.2016292070735 | 29 September 2016 | ||
MOD13A1.A2017129.h27v05.006.2017145230514 | 9 May 2017 | ||
MOD13A1.A2018129.h27v05.006.2018151110825 | 9 May 2018 | ||
GF-1 | PAN: 2 m MSS: 8 m | GF2_PMS2_E117.2_N34.2_20161005_L1A0001867916 | 5 October 2016 |
Mobile Phone Signaling Data | 100 m | Mobile Phone Signaling Data_Xuzhou_2014 | 2014 |
Mobile Phone Signaling Data _Xuzhou_2016 | 2016 | ||
Mobile Phone Signaling Data _Xuzhou_2017 | 2017 | ||
Mobile Phone Signaling Data _Xuzhou_2018 | 2018 | ||
Meteorological and Flux Observations | / | Tair = 24.27 °C; uz = 2.66 m/s; PA = 101.12 kPa; RH= 55.12%; λET= 128.25 W/m2 | 1 May 2014 |
Tair = 23.10 °C; uz = 2.65 m/s; PA = 101.42 kPa; RH = 67.94%; λET = 228.47 W/m2 | 4 October 2016 | ||
Tair = 23.18 °C; uz = 1.69 m/s; PA = 101.19 kPa; RH = 39.76%; λET = 114.19 W/m2 | 16 May 2017 | ||
Tair = 21.81 °C; uz = 4.77 m/s; PA = 101.69 kPa; RH = 48.00%; λET = 178.00 W/m2 | 3 May 2018 |
Factor | Correction Type with LST | Reference | Explaination |
---|---|---|---|
fi | Positive | [42] | Area porportion (density) of ISAs in a mixture pixel |
Albedo | Positive | [43] | Land surface albedo |
Population | Positive | [44,45] | Population density within an area |
AHF | Positive | [17,46] | Anthropogenic heat flux |
LPIISA | Positive | [47] | Porportion of the largest patch with high ISA density |
COHESIONISA | Positive | [29] | Natural connectivity degree between patches with high ISA density |
AIISA | Positive | [48] | Aggregation degree of patches with high ISA density |
SHAPE_MNISA | Positive | [29] | Mean shape index of patches with high ISA density |
fv | Negative | [20] | Area porportion (density) of UGSs in a mixture pixel |
ET | Negative | [28,49,50] | Evaportranspiration |
UGSSI | Negative | [24,51] | Shading index of UGSs |
LPIUGS | Negative | [52] | Porportion of the largest patch with high UGS density |
COHESIONUGS | Negative | [28] | Natural connectivity degree between patches with high UGS density |
AIUGS | Negative | [53] | Aggregation degree of patches with high UGS density |
SHAPE_MNUGS | Negative | [54] | Mean shape index of patches with high UGS density |
UGS Fraction Fitting with Ground Truth | ISA Fraction Fitting with Ground Truth | |
---|---|---|
Equation | y = 0.902x + 0.019 | y = 0.906x + 0.032 |
Pearson r | 0.931 | 0.894 |
R2 | 0.866 | 0.800 |
RMSE | 0.108 | 0.126 |
Factor | 1 May 2014 | 4 October 2016 | 16 May 2017 | 3 May 2018 | ||||
---|---|---|---|---|---|---|---|---|
q | p | q | p | q | p | q | p | |
R1 (fi) | 0.59 | 0.000 | 0.37 | 0.000 | 0.60 | 0.000 | 0.49 | 0.000 |
R2 (Albedo) | 0.09 | 0.000 | 0.16 | 0.000 | 0.26 | 0.000 | 0.14 | 0.000 |
R3 (Population) | 0.07 | 0.000 | 0.03 | 0.748 | 0.04 | 0.012 | 0.03 | 0.424 |
R4 (AHF) | 0.21 | 0.000 | 0.07 | 0.000 | 0.19 | 0.000 | 0.18 | 0.000 |
R5 (LPIISA) | 0.44 | 0.000 | 0.35 | 0.000 | 0.54 | 0.000 | 0.38 | 0.000 |
R6 (COHESIONISA) | 0.42 | 0.000 | 0.28 | 0.000 | 0.49 | 0.000 | 0.36 | 0.000 |
R7 (AIISA) | 0.25 | 0.000 | 0.21 | 0.000 | 0.32 | 0.000 | 0.22 | 0.000 |
R8 (SHAPE_MNISA) | 0.28 | 0.000 | 0.17 | 0.000 | 0.27 | 0.000 | 0.22 | 0.000 |
R9 (fv) | 0.53 | 0.000 | 0.55 | 0.000 | 0.63 | 0.000 | 0.59 | 0.000 |
R10 (ET) | 0.52 | 0.000 | 0.39 | 0.000 | 0.69 | 0.000 | 0.54 | 0.000 |
R11 (UGSSI) | 0.67 | 0.000 | 0.41 | 0.000 | 0.69 | 0.000 | 0.64 | 0.000 |
R12 (LPIUGS) | 0.55 | 0.000 | 0.47 | 0.000 | 0.62 | 0.000 | 0.57 | 0.000 |
R13 (COHESIONUGS) | 0.49 | 0.000 | 0.42 | 0.000 | 0.56 | 0.000 | 0.48 | 0.000 |
R14 (AIUGS) | 0.32 | 0.000 | 0.30 | 0.000 | 0.38 | 0.000 | 0.36 | 0.000 |
R15 (SHAPE_MNUGS) | 0.22 | 0.000 | 0.16 | 0.000 | 0.26 | 0.000 | 0.17 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Ding, N. Regulatory Effect Evaluation of Warming and Cooling Factors on Urban Land Surface Temperature Based on Multi-Source Satellite Data. Remote Sens. 2023, 15, 5025. https://doi.org/10.3390/rs15205025
Wang Y, Zhang Y, Ding N. Regulatory Effect Evaluation of Warming and Cooling Factors on Urban Land Surface Temperature Based on Multi-Source Satellite Data. Remote Sensing. 2023; 15(20):5025. https://doi.org/10.3390/rs15205025
Chicago/Turabian StyleWang, Yuchen, Yu Zhang, and Nan Ding. 2023. "Regulatory Effect Evaluation of Warming and Cooling Factors on Urban Land Surface Temperature Based on Multi-Source Satellite Data" Remote Sensing 15, no. 20: 5025. https://doi.org/10.3390/rs15205025
APA StyleWang, Y., Zhang, Y., & Ding, N. (2023). Regulatory Effect Evaluation of Warming and Cooling Factors on Urban Land Surface Temperature Based on Multi-Source Satellite Data. Remote Sensing, 15(20), 5025. https://doi.org/10.3390/rs15205025