A Multifactor Eigenvector Spatial Filtering-Based Method for Resolution-Enhanced Snow Water Equivalent Estimation in the Western United States
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets and Preprocessing
2.2.1. Ground Observation Data
2.2.2. Geolocation Features
2.2.3. Snow and Environmental Factors
2.2.4. Topographical Features
2.2.5. Brightness Temperature Product
2.2.6. Dataset Integration for Modeling
2.2.7. SWE Dataset for Independent Validation
3. Methodology
3.1. Multifactor Selection
3.2. Spatial Weights Matrix Construction
3.3. Eigen Decomposition and Eigenvectors Selection
3.4. Parameter Estimation for the RM-ESF Model
3.5. Assessment for the RM-ESF Model
3.6. SWE Estimation and Assessment
4. Results
4.1. Descriptive Statistics of Snow Parameters
4.2. Assessment of The Spatial Autocorrelation
4.3. Independent Validation of SWE Estimation
4.3.1. Overall Accuracy
4.3.2. Accuracy Evaluation under Different Land Cover Types
4.3.3. Accuracy Evaluation across Different Months
4.4. Mapping of the SWE Estimation
5. Discussion
5.1. Model Accuracy
5.2. Brightness Temperature Difference in the RM-ESF Model
5.3. The Influence of Variables on Snow Mass Distribution
5.4. ESFs in the RM-ESF Model
5.5. Limitations and Future Enhancements
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Variables | December | January | February |
---|---|---|---|
LAT | 1.73 | 2.00 | 1.42 |
LON | 2.15 | 2.20 | 2.13 |
ELV | 3.96 | 4.53 | / |
SLP | 1.51 | 1.55 | 1.30 |
QSM | / | / | 1.13 |
SPR | 1.09 | 1.09 | 1.06 |
AT | 2.45 | 2.10 | / |
ST | / | / | 2.90 |
QG | / | / | 1.23 |
WS | 1.17 | 1.23 | 1.07 |
TC | 1.16 | 1.17 | 1.21 |
TBD19h22v | 1.50 | 1.37 | 1.34 |
TBD19v22v | 3.23 | / | / |
TBD37h91v | / | / | 1.29 |
TBD37v19v | 2.46 | 2.34 | 1.63 |
TBD37v91v | 1.60 | / | / |
TBD91v19h | / | 2.35 | / |
References
- Che, T.; Dai, L.; Wang, J.; Zhao, K.; Liu, Q. Estimation of Snow Depth and Snow Water Equivalent Distribution Using Airborne Microwave Radiometry in the Binggou Watershed, the Upper Reaches of the Heihe River Basin. Int. J. Appl. Earth Obs. Geoinform. 2012, 17, 23–32. [Google Scholar] [CrossRef]
- Snapir, B.; Momblanch, A.; Jain, S.K.; Waine, T.W.; Holman, I.P. A Method for Monthly Mapping of Wet and Dry Snow Using Sentinel-1 and MODIS: Application to a Himalayan River Basin. Int. J. Appl. Earth Obs. Geoinform. 2019, 74, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating Snow-Cover Trends from Space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Foster, J.L.; Sun, C.; Walker, J.P.; Kelly, R.; Chang, A.; Dong, J.; Powell, H. Quantifying the Uncertainty in Passive Microwave Snow Water Equivalent Observations. Remote Sens. Environ. 2005, 94, 187–203. [Google Scholar] [CrossRef]
- Kelly, R.E. The AMSR-E Snow Depth Algorithm: Description and Initial Results. J. Remote Sens. Soc. Jpn. 2009, 29, 307–317. [Google Scholar]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.P.; Koskinen, J.; Bojkov, B. Estimating Northern Hemisphere Snow Water Equivalent for Climate Research through Assimilation of Space-Borne Radiometer Data and Ground-Based Measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial Neural Network-Based Techniques for the Retrieval of SWE and Snow Depth from SSM/I Data. Remote Sens. Environ. 2004, 90, 76–85. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support Vector Regression Snow-Depth Retrieval Algorithm Using Passive Microwave Remote Sensing Data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Gharaei-Manesh, S.; Fathzadeh, A.; Taghizadeh-Mehrjardi, R. Comparison of Artificial Neural Network and Decision Tree Models in Estimating Spatial Distribution of Snow Depth in a Semi-Arid Region of Iran. Cold Reg. Sci. Technol. 2016, 122, 26–35. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR Derived Global Snow Cover Parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.T.; Chen, Z.; Tsang, L.; Hwang, J.-N.; Chang, A.T.C. Retrieval of Snow Parameters by Iterative Inversion of a Neural Network. IEEE Trans. Geosci. Remote Sens. 1993, 31, 842–852. [Google Scholar] [CrossRef]
- Kelly, R.E.; Chang, A.T.; Tsang, L.; Foster, J.L. A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.L.; Chang, A.T.C.; Hall, D.K. Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, a Revised Algorithm and a Snow Depth Climatology. Remote Sens. Environ. 1997, 62, 132–142. [Google Scholar] [CrossRef]
- Wiesmann, A.; Mätzler, C. Microwave Emission Model of Layered Snowpacks. Remote Sens. Environ. 1999, 70, 307–316. [Google Scholar] [CrossRef]
- Liang, J.; Liu, X.; Huang, K.; Li, X.; Shi, X.; Chen, Y.; Li, J. Improved Snow Depth Retrieval by Integrating Microwave Brightness Temperature and Visible/Infrared Reflectance. Remote Sens. Environ. 2015, 156, 500–509. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T. Passive Microwave Remote Sensing of Snow Depth and Snow Water Equivalent: Overview. Adv. Earth Sci. 2018, 33, 590. [Google Scholar] [CrossRef]
- Jost, G.; Weiler, M.; Gluns, D.R.; Alila, Y. The Influence of Forest and Topography on Snow Accumulation and Melt at the Watershed-Scale. J. Hydrol. 2007, 347, 101–115. [Google Scholar] [CrossRef]
- Thayn, J.B.; Simanis, J.M. Accounting for Spatial Autocorrelation in Linear Regression Models Using Spatial Filtering with Eigenvectors. Ann. Assoc. Am. Geogr. 2013, 103, 47–66. [Google Scholar] [CrossRef]
- Molotch, N.P.; Colee, M.T.; Bales, R.C.; Dozier, J. Estimating the Spatial Distribution of Snow Water Equivalent in an Alpine Basin Using Binary Regression Tree Models: The Impact of Digital Elevation Data and Independent Variable Selection. Hydrol. Process. 2005, 19, 1459–1479. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Eigenfunctions of the Geographic Weights Matrix Accompanying Geo-Referenced Data. Can. Geogr. Géogr. Can. 1996, 40, 351–367. [Google Scholar] [CrossRef]
- Griffith, D.; Chun, Y. Spatial autocorrelation and spatial filtering. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1477–1507. [Google Scholar]
- Mortimer, C.; Mudryk, L.; Derksen, C.; Luojus, K.; Brown, R.; Kelly, R.; Tedesco, M. Evaluation of Long-Term Northern Hemisphere Snow Water Equivalent Products. Cryosphere 2020, 14, 1579–1594. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Li, L.; Gu, L.; Zheng, X.; Jiang, T.; Li, X. An Approach to Improve the Spatial Resolution and Accuracy of AMSR2 Passive Microwave Snow Depth Product Using Machine Learning in Northeast China. Remote Sens. 2022, 14, 1480. [Google Scholar] [CrossRef]
- Yan, D.; Ma, N.; Zhang, Y. Development of a Fine-Resolution Snow Depth Product Based on the Snow Cover Probability for the Tibetan Plateau: Validation and Spatial–Temporal Analyses. J. Hydrol. 2022, 604, 127027. [Google Scholar] [CrossRef]
- Yang, K.; Musselman, K.N.; Rittger, K.; Margulis, S.A.; Painter, T.H.; Molotch, N.P. Combining Ground-Based and Remotely Sensed Snow Data in a Linear Regression Model for Real-Time Estimation of Snow Water Equivalent. Adv. Water Resour. 2022, 160, 104075. [Google Scholar] [CrossRef]
- Wei, P.; Zhang, T.; Zhou, X.; Yi, G.; Li, J.; Wang, N.; Wen, B. Reconstruction of Snow Depth Data at Moderate Spatial Resolution (1 km) from Remotely Sensed Snow Data and Multiple Optimized Environmental Factors: A Case Study over the Qinghai-tibetan Plateau. Remote Sens. 2021, 13, 657. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 Snow Depth Downscaling Algorithm Based on a Multifactor Approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Wilson, J.P.; Chun, Y.; Chen, Y.; Su, H. A Zero-Inflated Spatiotemporal Analysis for Snowpack Variations and Influence of Environmental Factors in the Northern Hemisphere. J. Hydrol. 2023, 616, 128760. [Google Scholar] [CrossRef]
- Zhang, C.; Mou, N.; Niu, J.; Zhang, L.; Liu, F. Spatio-Temporal Variation Characteristics of Snow Depth and Snow Cover Days over the Tibetan Plateau. Water 2021, 13, 307. [Google Scholar] [CrossRef]
- Bennett, W.B.; Wang, J.; Bras, R.L. Estimation of Global Ground Heat Flux. J. Hydrometeorol. 2007, 9, 744–759. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. Influence of Snow Cover Changes on Surface Radiation and Heat Balance Based on the WRF Model. Theor. Appl. Climatol. 2017, 130, 205–215. [Google Scholar] [CrossRef]
- Serquet, G.; Marty, C.; Dulex, J.-P.; Rebetez, M. Seasonal Trends and Temperature Dependence of the Snowfall/Precipitation-Day Ratio in Switzerland. Geophys. Res. Lett. 2011, 38, L07703. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Li, L.; Zhang, S.; Qin, Q. Environmental Factors Influencing Snowfall and Snowfall Prediction in the Tianshan Mountains, Northwest China. J. Arid Land 2019, 11, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.Y.; Zhang, T.; Su, H.; Xiao, X.X.; Wang, S.F.; Hu, Y.T.; Wang, H.J.; Zheng, L.; Zhang, W.; Xu, M.; et al. Impacts of Landscape and Climatic Factors on Snow Cover in the Altai Mountains, China. Adv. Clim. Chang. Res. 2021, 12, 95–107. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow Depth Derived from Passive Microwave Remote-Sensing Data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, P.; Zhang, L.; Yang, H.; Yang, J. Improvement of Snow Depth Retrieval for FY3B-MWRI in China. Sci. China Earth Sci. 2014, 57, 1278–1292. [Google Scholar] [CrossRef]
- Swaby, A.; Lucas, M.; Ross, R. (Eds.) The Teacher-Friendly Guide to the Earth Science of the Western US; Paleontological Research Institution, 1259 Trumansburg Rd: Ithaca, NY, USA, 2014; ISBN 978-0-87710-514-5. [Google Scholar]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K.; Rango, A.; Hartline, B.K. Snow Water Equivalent Estimation by Microwave Radiometry. Cold Reg. Sci. Technol. 1982, 5, 259–267. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Meybeck, M.; Green, P.A.; Vörösmarty, C.J. A New Typology for Mountains and Other Relief Classes. Mt. Res. Dev. 2001, 21, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Liedekerke, M.V.; Borrelli, P.; Köninger, J.; Ballabio, C.; Orgiazzi, A.; Lugato, E.; Liakos, L.; Hervas, J.; Jones, A.; et al. European Soil Data Centre 2.0: Soil Data and Knowledge in Support of the EU Policies. Eur. J. Soil Sci. 2022, 73, e13315. [Google Scholar] [CrossRef]
- Kumar, S.V.; Jasinski, M.F.; Mocko, D.M.; Rodell, M.; Borak, J.; Li, B.; Beaudoing, H.K.; Peters-Lidard, C.D. NCA-LDAS Land Analysis: Development and Performance of a Multisensor, Multivariate Land Data Assimilation System for the National Climate Assessment. J. Hydrometeorol. 2019, 20, 1571–1593. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, D.A. A Spatial Filtering Specification for the Autologistic Model. Environ. Plan. A 2004, 36, 1791–1811. [Google Scholar] [CrossRef] [Green Version]
- Brodzik, M.J.; Long, D.G.; Hardman, M.A. Best Practices in Crafting the Calibrated, Enhanced-Resolution Passive-Microwave EASE-Grid 2.0 Brightness Temperature Earth System Data Record. Remote Sens. 2018, 10, 1793. [Google Scholar] [CrossRef] [Green Version]
- Golunov, V.A. Scattering of Thermal Microwave Radiation by Density Irregularities of Freshly Fallen and Fine-Grained Snow. J. Commun. Technol. Electron. 2019, 64, 1065–1072. [Google Scholar] [CrossRef]
- Tsang, L.; Chen, Z.; Oh, S.; Marks, R.J.; Chang, A.T.C. Inversion of Snow Parameters from Passive Microwave Remote Sensing Measurements by a Neural Network Trained with a Multiple Scattering Model. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Davis, D.; Tsang, L.; Hwang, J.N.; Chang, A.T.C. Inversion of Snow Parameters by Neural Network with Iterative Inversion. In Proceedings of the IGARSS ’92 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; Volume 2, pp. 1061–1063. [Google Scholar]
- Golunov, V.A. The Millimeter Wave Response to Volume Density and Grain Size of Dry Homogeneous Snow. An Algorithm for Retrieval of Snow Depth from Radiometer Data at the Frequencies 22 and 37 GHz. In Proceedings of the 2008 Microwave Radiometry and Remote Sensing of the Environment, Florence, Italy, 11–14 March 2008; pp. 1–4. [Google Scholar]
- Derksen, C.; Ledrew, E.; Walker, A.; Goodison, B. Influence of Sensor Overpass Time on Passive Microwave-Derived Snow Cover Parameters. Remote Sens. Environ. 2000, 71, 297–308. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Kan, X.; Chu, Y. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sens. 2021, 13, 584. [Google Scholar] [CrossRef]
- Hall, D.K.; Kelly, R.E.J.; Riggs, G.A.; Chang, A.T.C.; Foster, J.L. Assessment of the Relative Accuracy of Hemispheric-Scale Snow-Cover Maps. Ann. Glaciol. 2002, 34, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Luojus, K.; Pulliainen, J.; Takala, M.; Lemmetyinen, J.; Mortimer, C.; Derksen, C.; Mudryk, L.; Moisander, M.; Hiltunen, M.; Smolander, T.; et al. GlobSnow v3.0 Northern Hemisphere Snow Water Equivalent Dataset. Sci. Data 2021, 8, 163. [Google Scholar] [CrossRef]
- Pearson’s and Spearman’s Correlation. In An Introduction to Statistical Analysis in Research; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 435–471. ISBN 978-1-119-45420-5.
- Griffith, D.A.; Paelinck, J.H.P. Non-Standard Spatial Statistics and Spatial Econometrics; Advances in Geographic Information Science; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011; ISBN 978-3-642-16043-1. [Google Scholar]
- Menard, S.W. Applied Logistic Regression Analysis, 2nd ed.; Sage University Papers; Quantitative Applications in the Social Sciences; Sage Publications: Thousand Oaks, CA, USA, 2002; ISBN 978-0-7619-2208-7. [Google Scholar]
- National Centers for Environmental Information. NOAA National Centers for Environmental Information, Monthly National Snow and Ice Report for Annual 2011. 2012. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/snow/201113 (accessed on 20 June 2023).
- Liu, Y.; Peters-Lidard, C.D.; Kumar, S.V.; Arsenault, K.R.; Mocko, D.M. Blending Satellite-Based Snow Depth Products with in Situ Observations for Streamflow Predictions in the Upper Colorado River Basin. Water Resour. Res. 2015, 51, 1182–1202. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, X.; Liang, T.; Xie, H.; Wang, X.; Feng, Q.; Chen, Q. A New Approach of Dynamic Monitoring of 5-Day Snow Cover Extent and Snow Depth Based on MODIS and AMSR-E Data from Northern Xinjiang Region. Hydrol. Process. 2012, 26, 3052–3061. [Google Scholar] [CrossRef]
- Cho, E.; Vuyovich, C.M.; Kumar, S.V.; Wrzesien, M.L.; Kim, R.S.; Jacobs, J.M. Precipitation Biases and Snow Physics Limitations Drive the Uncertainties in Macroscale Modeled Snow Water Equivalent. Hydrol. Earth Syst. Sci. 2022, 26, 5721–5735. [Google Scholar] [CrossRef]
- Markus, T.; Powell, D.C.; Wang, J.R. Sensitivity of Passive Microwave Snow Depth Retrievals to Weather Effects and Snow Evolution. IEEE Trans. Geosci. Remote Sens. 2006, 44, 68–77. [Google Scholar] [CrossRef]
- Smith, T.; Bookhagen, B. Changes in Seasonal Snow Water Equivalent Distribution in High Mountain Asia (1987 to 2009). Sci. Adv. 2018, 4, e1701550. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.J.; Kelly, R.E.J. Estimation of Snow Depth in the UK Using the HUT Snow Emission Model. Int. J. Remote Sens. 2008, 29, 4249–4267. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Lei, X.; Ju, Y.; Bu, X.; Li, H. Quantitative Determination of Environmental Factors Governing the Snow Melting: A Geodetector Case Study in the Central Tienshan Mountains. Sci. Rep. 2022, 12, 11565. [Google Scholar] [CrossRef]
- Varhola, A.; Coops, N.C.; Weiler, M.; Moore, R.D. Forest Canopy Effects on Snow Accumulation and Ablation: An Integrative Review of Empirical Results. J. Hydrol. 2010, 392, 219–233. [Google Scholar] [CrossRef]
- Teti, P. Effects of Overstory Mortality on Snow Accumulation and Ablation; Ministry of Forests and Range: Williams Lake, BC, Canada, 2008; Volume 2008, 41p.
- Poe, G.A. Optimum Interpolation of Imaging Microwave Radiometer Data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 800–810. [Google Scholar] [CrossRef] [Green Version]
Category | Variable | Abbr. | Resolution | Source | Link | |
---|---|---|---|---|---|---|
Station observation | Snow depth/Snow water equivalent | SD/ SWE | / | GHCNd | https://www.ncei.noaa.gov/ (accessed on 19 September 2022). | |
Geolocation factors | Latitude | LAT | / | GADM | https://gadm.org/ (accessed on 19 September 2022). | |
Longitude | LON | / | ||||
Topographical features | Elevation | ELV | 5 km | Global 1, 5, 10, 100-km Topography | https://www.earthenv.org/topography (accessed on 19 September 2022). | |
Slope | SLP | |||||
Snow factors | Snowmelt | QSM | 0.125° | NCALDAS_NOAH0125_D | https://ldas.gsfc.nasa.gov/NCA-LDAS (accessed on 19 September 2022). | |
Snow precipitation rate | SPR | |||||
Snow cover fraction | SCF | |||||
Environmental factors | Air temperature | AT | 0.125° | NCALDAS_NOAH0125_D | https://ldas.gsfc.nasa.gov/NCA-LDAS (accessed on 15 September 2022). | |
Soil temperature (underground 0–10 cm) | ST | |||||
Heat flux | QG | |||||
Wind speed | WS | |||||
Tree cover | TC | 30 m | Global Forest Change 2000–2021 Data | https://storage.googleapis.com/earthenginepartners-hansen/GFC-2021-v1.9/download.html (accessed on 15 September 2022). | ||
Brightness temperature | Brightness temperature | 19 (h, v) 22 (v) 37 (h, v) 91 (h, v) | TB | 3.125 km | MEaSUREs | https://nsidc.org/data/nsidc-0630/versions/1 (accessed on 03 October 2022. |
6.25 km |
Category | Method | Abbr. | Resolution | Source | Link |
---|---|---|---|---|---|
Reference SWE data for independent validation | Station observations | SNOTEL | / | SNOTEL | https://www.nrcs.usda.gov/ (accessed on 19 November 2022). |
Comparison SWE dataset | Products from reanalysis | NCA | 0.125° | NCALDAS_NOAH0125_D | https://ldas.gsfc.nasa.gov (accessed on 15 September 2022). |
ERA5 | 0.1° | ERA5 | https://cds.climate.copernicus.eu/ (accessed on 23 May 2023). | ||
Independent passive microwave estimates | AMSR2 | 25 km | AMSR-E SWE v2.0 | https://nsidc.org/data/ae_dysno/versions/2 (accessed on 26 October 2022). | |
Passive microwave estimates combined with station observations | GlobSnow3 | 25 km | GlobSnow v3.0 | https://www.globsnow.info/ (accessed on 23 May 2023). |
Time | RM | RM-ESF | ||
---|---|---|---|---|
Moran’s I | p-Value | Moran’s I | p-Value | |
December | 0.205 | <0.001 | −0.035 | 0.890 |
January | 0.270 | <0.001 | −0.024 | 0.790 |
February | 0.274 | <0.001 | 0.068 | 0.008 |
Criteria | AMSR2 | GlobSnow3 | NCA | ERA5 | RM | RM-ESF |
---|---|---|---|---|---|---|
Pearson’s r | 0.33 ** | 0.50 ** | 0.48 ** | 0.65 ** | 0.67 ** | 0.72 ** |
RMSE (mm) | 131.38 | 100.03 | 98.80 | 67.33 | 62.57 | 56.70 |
MAE (mm) | 115.45 | 83.58 | 81.94 | 51.82 | 48.72 | 43.88 |
PME (mm) | 19.70 | 30.65 | 30.29 | 30.53 | 27.14 | 26.64 |
NME (mm) | −116.09 | −87.69 | −85.64 | −56.99 | −54.93 | −49.74 |
Criteria | SWE | All | Forest | Savanna | Grassland |
---|---|---|---|---|---|
(11,492) | (330) | (5053) | (6109) | ||
Pearson’s r | AMSR2 | 0.33 ** | −0.05 ** | 0.30 ** | 0.42 ** |
GlobSnow3 | 0.50 ** | 0.30 ** | 0.56 ** | 0.48 ** | |
NCA | 0.48 ** | 0.25 ** | 0.49 ** | 0.48 ** | |
ERA5 | 0.65 ** | 0.87 | 0.70 ** | 0.59 ** | |
RM | 0.67 ** | 0.44 ** | 0.72 ** | 0.65 ** | |
RM-ESF | 0.72 ** | 0.54 ** | 0.77 ** | 0.69 ** | |
RMSE (mm) | AMSR2 | 131.38 | 156.66 | 142.64 | 119.66 |
GlobSnow3 | 100.03 | 135.64 | 103.50 | 94.70 | |
NCA | 98.80 | 120.15 | 94.62 | 100.88 | |
ERA5 | 67.33 | 40.33 | 61.64 | 72.79 | |
RM | 62.57 | 101.77 | 61.55 | 60.60 | |
RM-ESF | 56.70 | 93.26 | 52.57 | 57.37 | |
MAE (mm) | AMSR2 | 115.45 | 137.76 | 126.58 | 105.03 |
GlobSnow3 | 83.58 | 113.82 | 87.22 | 78.94 | |
NCA | 81.94 | 95.17 | 76.62 | 85.63 | |
ERA5 | 51.82 | 25.76 | 47.11 | 57.13 | |
RM | 48.72 | 78.21 | 48.10 | 47.64 | |
RM-ESF | 43.88 | 70.92 | 40.86 | 44.93 | |
PME (mm) | AMSR2 | 19.70 | / | 11.52 | 20.65 |
GlobSnow3 | 30.65 | 88.69 | 28.92 | 29.30 | |
NCA | 30.29 | 4.50 | 33.65 | 25.47 | |
ERA5 | 30.53 | 19.09 | 29.20 | 33.59 | |
RM | 27.14 | 10.06 | 24.12 | 29.45 | |
RM-ESF | 26.64 | 10.62 | 25.76 | 27.64 | |
NME (mm) | AMSR2 | −116.09 | −137.76 | −126.76 | −106.00 |
GlobSnow3 | −87.69 | −115.81 | −89.71 | −84.34 | |
NCA | −85.64 | −97.14 | −81.02 | −88.63 | |
ERA5 | −56.99 | −30.44 | −52.19 | −61.68 | |
RM | −54.93 | −82.14 | −54.40 | −53.55 | |
RM-ESF | −49.74 | −76.29 | −46.12 | −50.96 |
Criteria | SWE | All | December | January | February |
---|---|---|---|---|---|
(11,492) | (4424) | (4236) | (2832) | ||
Pearson’s r | AMSR2 | 0.33 ** | 0.24 ** | 0.08 ** | 0.08 ** |
GlobSnow3 | 0.50 ** | 0.34 ** | 0.41 ** | 0.32 ** | |
NCA | 0.48 ** | 0.55 ** | 0.55 ** | 0.36 ** | |
ERA5 | 0.65 ** | 0.64 ** | 0.59 ** | 0.51 ** | |
RM | 0.67 ** | 0.61 ** | 0.68 ** | 0.47 ** | |
RM-ESF | 0.72 ** | 0.66 ** | 0.75 ** | 0.52 ** | |
RMSE (mm) | AMSR2 | 131.38 | 99.05 | 136.67 | 163.65 |
GlobSnow3 | 100.03 | 86.89 | 94.62 | 124.15 | |
NCA | 98.80 | 63.35 | 99.60 | 136.02 | |
ERA5 | 67.33 | 48.11 | 67.90 | 88.80 | |
RM | 62.57 | 45.10 | 61.14 | 84.37 | |
RM-ESF | 56.70 | 42.64 | 53.19 | 77.28 | |
MAE (mm) | AMSR2 | 115.45 | 86.47 | 122.74 | 149.79 |
GlobSnow3 | 83.58 | 72.84 | 78.47 | 108.02 | |
NCA | 81.94 | 51.90 | 87.24 | 120.95 | |
ERA5 | 51.82 | 36.50 | 54.50 | 71.75 | |
RM | 48.72 | 34.76 | 50.20 | 68.31 | |
RM-ESF | 43.88 | 33.13 | 43.68 | 60.97 | |
PME (mm) | AMSR2 | 19.70 | 7.11 | 22.50 | 37.87 |
GlobSnow3 | 30.65 | 30.44 | 28.83 | 35.63 | |
NCA | 30.29 | 31.31 | 27.45 | 30.42 | |
ERA5 | 30.53 | 20.56 | 34.82 | 46.07 | |
RM | 27.14 | 23.21 | 24.54 | 38.96 | |
RM-ESF | 26.64 | 22.54 | 23.35 | 37.87 | |
NME (mm) | AMSR2 | −116.09 | −87.05 | −123.38 | −150.51 |
GlobSnow3 | −87.69 | −75.71 | −83.51 | −112.26 | |
NCA | −85.64 | −54.35 | −89.81 | −125.03 | |
ERA5 | −56.99 | −41.37 | −58.75 | −76.68 | |
RM | −54.93 | −39.79 | −54.76 | −75.97 | |
RM-ESF | −49.74 | −38.02 | −48.27 | −69.13 |
Variables | December | January | February |
---|---|---|---|
Intercept | 1076.06 | 663.04 | 1191.22 |
TBD19h22v | −507.86 | −588.95 | −221.73 |
TBD19v22v | −58.49 | / | / |
TBD37h91v | / | / | −27.72 |
TBD37v19v | −948.37 | −668.26 | −707.8 |
TBD37v91v | −163.54 | / | / |
TBD91v19h | / | 190.95 | / |
LAT | 89.59 | 226.38 | −87.91 |
LON | −310.44 | −397.88 | −22.42 |
ELV | 741.36 | 1045.9 | / |
SLP | 81.17 | 54.33 | 258.64 |
QSM | / | / | 391.52 |
SPR | 696.05 | 655.36 | 497.26 |
AT | −404.84 | −234.58 | / |
ST | / | / | −708.35 |
QG | / | / | 22.1 |
WS | 106.34 | 81.94 | 195.52 |
TC | 33.66 | 75.92 | 118.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Chen, Y.; Wilson, J.P.; Yang, J.; Su, H.; Xu, R. A Multifactor Eigenvector Spatial Filtering-Based Method for Resolution-Enhanced Snow Water Equivalent Estimation in the Western United States. Remote Sens. 2023, 15, 3821. https://doi.org/10.3390/rs15153821
Chen Y, Chen Y, Wilson JP, Yang J, Su H, Xu R. A Multifactor Eigenvector Spatial Filtering-Based Method for Resolution-Enhanced Snow Water Equivalent Estimation in the Western United States. Remote Sensing. 2023; 15(15):3821. https://doi.org/10.3390/rs15153821
Chicago/Turabian StyleChen, Yuejun, Yumin Chen, John P. Wilson, Jiaxin Yang, Heng Su, and Rui Xu. 2023. "A Multifactor Eigenvector Spatial Filtering-Based Method for Resolution-Enhanced Snow Water Equivalent Estimation in the Western United States" Remote Sensing 15, no. 15: 3821. https://doi.org/10.3390/rs15153821
APA StyleChen, Y., Chen, Y., Wilson, J. P., Yang, J., Su, H., & Xu, R. (2023). A Multifactor Eigenvector Spatial Filtering-Based Method for Resolution-Enhanced Snow Water Equivalent Estimation in the Western United States. Remote Sensing, 15(15), 3821. https://doi.org/10.3390/rs15153821