Estimation of Daily Arctic Winter Sea Ice Thickness from Thermodynamic Parameters Using a Self-Attention Convolutional Neural Network
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Used in This Study
2.2. Generation of the SIT Estimation Dataset
2.3. Self-Attention Convolutional Neural Network (SAC-Net)
2.3.1. Fully Convolutional Neural Network
2.3.2. Self-Attention Block
2.4. Network Parameter Settings and Quantitative Evaluation Indices
3. Results
3.1. Model Performance on the Test Data
3.2. Accuracy Assessment of SIT with Other Methods Based on SIMBA Buoys
3.3. Comparisons among Different SIT Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwok, R. Deformation of the Arctic Ocean Sea Ice Cover between November 1996 and April 1997: A Qualitative Survey. In Proceedings of the IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, Fairbanks, AK, USA, 13–16 June 2001; pp. 315–322. [Google Scholar] [CrossRef]
- Perovich, D.K.; Nghiem, S.V.; Markus, T.; Schweiger, A. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System. J. Geophys. Res. Ocean. 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Lee, S.M.; Meier, W.N.; Sohn, B.J.; Shi, H.; Gasiewski, A.J. Estimation of Arctic Basin-Scale Sea Ice Thickness from Satellite Passive Microwave Measurements. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5841–5850. [Google Scholar] [CrossRef]
- Demir, O.; Jezek, K.; Brogioni, M.; Macelloni, G.; Kaleschke, L.; Johnson, J. Studies of the Retrieval of Sea Ice Thickness and Salinity with Wideband Microwave Radiometry. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5544–5545. [Google Scholar] [CrossRef]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 203–320. ISBN 9781009157964. [Google Scholar]
- Richter-Menge, J.A.; Perovich, D.K.; Elder, B.C.; Claffey, K.; Rigor, I.; Ortmeyer, M. Ice Mass-Balance Buoys: A Tool for Measuring and Attributing Changes in the Thickness of the Arctic Sea-Ice Cover. Ann. Glaciol. 2006, 44, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Fukamachi, Y.; Simizu, D.; Ohshima, K.I.; Eicken, H.; Mahoney, A.R.; Iwamoto, K.; Moriya, E.; Nihashi, S. Sea-Ice Thickness in the Coastal Northeastern Chukchi Sea from Moored Ice-Profiling Sonar. J. Glaciol. 2017, 63, 888–898. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H. Ground Penetrating Radar Data Interpretation Using Electromagnetic Field Analysis for Sea Ice Thickness Measurement. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Barrett, A.; Serreze, M.; Schweiger, A. Erratum: Using Records from Submarine, Aircraft and Satellites to Evaluate Climate Model Simulations of Arctic Sea Ice Thickness (Cryosphere (2014) 8 (1839–1854)). Cryosphere 2015, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R. Satellite Remote Sensing of Sea-Ice Thickness and Kinematics: A Review. J. Glaciol. 2011, 56, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Kacimi, S.; Webster, M.A.; Kurtz, N.T.; Petty, A.A. Arctic Snow Depth and Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards: A First Examination. J. Geophys. Res. Ocean. 2020, 125, 1–19. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Liu, B.; Xie, H.; Ozsoy-Cicek, B. Deriving Antarctic Sea-Ice Thickness from Satellite Altimetry and Estimating Consistency for NASA’s ICESat/ICESat-2 Missions. Geophys. Res. Lett. 2021, 48, 1–12. [Google Scholar] [CrossRef]
- Pang, X.; Chen, Y.; Ji, Q.; Li, G.; Shi, L.; Lan, M.; Liang, Z. An Improved Algorithm for the Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. Remote Sens. 2022, 14, 1069. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, S.; Li, J.; Geng, T.; Xuan, Y.; Li, F. Arctic Sea Ice Thickness Variations from CryoSat-2 Satellite Altimetry Data. Sci. China Earth Sci. 2021, 64, 1080–1089. [Google Scholar] [CrossRef]
- Ji, Q.; Li, B.; Pang, X.; Zhao, X.; Lei, R. Arctic Sea Ice Density Observation and Its Impact on Sea Ice Thickness Retrieval from CryoSat–2. Cold Reg. Sci. Technol. 2021, 181, 103177. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter Arctic Sea Ice Thickness from ICESat-2 Freeboards. J. Geophys. Res. Ocean. 2020, 125, 1–28. [Google Scholar] [CrossRef]
- Warren, S.G.; Rigor, I.G.; Untersteiner, N.; Radionov, V.F.; Bryazgin, N.N.; Aleksandrov, Y.I.; Colony, R. Snow Depth on Arctic Sea Ice. J. Clim. 1999, 12, 1814–1829. [Google Scholar] [CrossRef]
- Laxon, S.; Peacock, H.; Smith, D. High Interannual Variability of Sea Ice Thickness in the Arctic Region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef]
- Wang, X.; Key, J.; Kwok, R.; Zhang, J. Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data. Remote Sens. 2016, 8, 713. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Rothrock, D.A. Thin Ice Thickness from Satellite Thermal Imagery. J. Geophys. Res. C Ocean. 1996, 101, 25753–25766. [Google Scholar] [CrossRef]
- Kaleschke, L.; Maaß, N.; Haas, C.; Hendricks, S.; Heygster, G.; Tonboe, R.T. A Sea-Ice Thickness Retrieval Model for 1.4 GHz Radiometry and Application to Airborne Measurements over Low Salinity Sea-Ice. Cryosphere 2010, 4, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Tian-Kunze, X.; Kaleschke, L.; Maaß, N.; Mäkynen, M.; Serra, N.; Drusch, M.; Krumpen, T. SMOS-Derived Thin Sea Ice Thickness: Algorithm Baseline, Product Specifications and Initial Verification. Cryosphere 2014, 8, 997–1018. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Gabarro, C.; Turiel, A.; Portabella, M.; Martinez, J. On the Retrieval of Sea-Ice Thickness Using SMOS Polarization Differences. J. Glaciol. 2019, 65, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Huntemann, M.; Heygster, G.; Kaleschke, L.; Krumpen, T.; Mäkynen, M.; Drusch, M. Empirical Sea Ice Thickness Retrieval during the Freeze-up Period from SMOS High Incident Angle Observations. Cryosphere 2014, 8, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Kaleschke, L.; Tian-Kunze, X.; Maaß, N.; Beitsch, A.; Wernecke, A.; Miernecki, M.; Müller, G.; Fock, B.H.; Gierisch, A.M.U.; Schlünzen, K.H.; et al. SMOS Sea Ice Product: Operational Application and Validation in the Barents Sea Marginal Ice Zone. Remote Sens. Environ. 2016, 180, 264–273. [Google Scholar] [CrossRef]
- Kaleschke, L.; Tian-Kunze, X.; Maas, N.; Ricker, R.; Hendricks, S.; Drusch, M. Improved Retrieval of Sea Ice Thickness from SMOS and CryoSat-2. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5232–5235. [Google Scholar] [CrossRef]
- Wang, X.; Key, J.R.; Liu, Y. A Thermodynamic Model for Estimating Sea and Lake Ice Thickness with Optical Satellite Data. J. Geophys. Res. Ocean. 2010, 115, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Olonscheck, D.; Mauritsen, T.; Notz, D. Arctic Sea-Ice Variability Is Primarily Driven by Atmospheric Temperature Fluctuations. Nat. Geosci. 2019, 12, 430–434. [Google Scholar] [CrossRef]
- Notz, D.; Jahn, A.; Holland, M.; Hunke, E.; Massonnet, F.; Stroeve, J.; Tremblay, B.; Vancoppenolle, M. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding Sea Ice through Climate-Model Simulations. Geosci. Model Dev. 2016, 9, 3427–3446. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Liu, J.; Xu, S. Seasonal Arctic Sea Ice Prediction Using a Newly Developed Fully Coupled Regional Model with the Assimilation of Satellite Sea Ice Observations. J. Adv. Model. Earth Syst. 2020, 12, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rothrock, D.A. Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates. Mon. Weather Rev. 2003, 131, 845–861. [Google Scholar] [CrossRef]
- Shi, Q.; Yang, Q.; Mu, L.; Wang, J.; Massonnet, F.; Mazloff, M.R. Evaluation of Sea-Ice Thickness from Four Reanalyses in the Antarctic Weddell Sea. Cryosphere 2021, 15, 31–47. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Samali, B.; Rashidi, M.; Mohammadi, M.; Nguyen, T.N.; Zhang, G. Vision-Based Concrete Crack Detection Using a Hybrid Framework Considering Noise Effect. J. Build. Eng. 2022, 61, 105246. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, S.; Samali, B.; Nguyen, T.N.; Zhai, C.; Li, J.; Xie, X. Torsional Capacity Evaluation of RC Beams Using an Improved Bird Swarm Algorithm Optimised 2D Convolutional Neural Network. Eng. Struct. 2022, 273, 115066. [Google Scholar] [CrossRef]
- Liang, Z.; Pang, X.; Ji, Q.; Zhao, X.; Li, G.; Chen, Y. An Entropy-Weighted Network for Polar Sea Ice Open Lead Detection from Sentinel-1 SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Satellite SAR Data-Based Sea Ice Classification: An Overview. Geosci. 2019, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Jun Kim, Y.; Kim, H.C.; Han, D.; Lee, S.; Im, J. Prediction of Monthly Arctic Sea Ice Concentrations Using Satellite and Reanalysis Data Based on Convolutional Neural Networks. Cryosphere 2020, 14, 1083–1104. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Kim, H.C. Retrieval of Daily Sea Ice Thickness from AMSR2 Passive Microwave Data Using Ensemble Convolutional Neural Networks. GIScience Remote Sens. 2021, 58, 812–830. [Google Scholar] [CrossRef]
- Dawson, G.; Landy, J.; Tsamados, M.; Komarov, A.S.; Howell, S.; Heorton, H.; Krumpen, T. A 10-Year Record of Arctic Summer Sea Ice Freeboard from CryoSat-2. Remote Sens. Environ. 2022, 268, 112744. [Google Scholar] [CrossRef]
- Landy, J.C.; Dawson, G.J.; Tsamados, M.; Bushuk, M.; Stroeve, J.C.; Howell, S.E.L.; Krumpen, T.; Babb, D.G.; Komarov, A.S.; Heorton, H.D.B.S.; et al. A Year-Round Satellite Sea-Ice Thickness Record from CryoSat-2. Nature 2022, 609, 517–522. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernic. Clim. Chang. Serv. Clim. Data Store (CDS) 2019, 13, 4349–4383. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Kaleschke, L.; Tian-Kunze, X.; King, J.; Haas, C. A Weekly Arctic Sea-Ice Thickness Data Record from Merged CryoSat-2 and SMOS Satellite Data. Cryosphere 2017, 11, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
- Key, J.; Wang, X.; Liu, Y.; Dworak, R.; Letterly, A. The AVHRR Polar Pathfinder Climate Data Records. Remote Sens. 2016, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rothrock, D. A Thickness and Enthalpy Distribution Sea-Ice Model. J. Phys. Oceanogr. 2001, 31, 2986–3001. [Google Scholar] [CrossRef]
- Thorndike, A.S.; Rothrock, D.A.; Maykut, G.A.; Colony, R. The Thickness Distribution of Sea Ice. J. Geophys. Res. 1975, 80, 4501–4513. [Google Scholar] [CrossRef]
- Ruibo, L.; Bin, C.; Mario, H.; Guangyu, Z. Snow Depth and Sea Ice Thickness Derived from the Measurements of SIMBA Buoys Deployed in the Arctic Ocean during the Legs 1a, 1, and 3 of the MOSAiC Campaign in 2019–2020. PANGAEA 2021. [Google Scholar] [CrossRef]
- Jackson, K.; Wilkinson, J.; Maksym, T.; Meldrum, D.; Beckers, J.; Haas, C.; Mackenzie, D. A Novel and Low-Cost Sea Ice Mass Balance Buoy. J. Atmos. Ocean. Technol. 2013, 30, 2676–2688. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Walsh, J.E.; Timlin, M.S. Arctic Sea Ice Variability in the Context of Recent Atmospheric Circulation Trends. J. Clim. 2000, 13, 617–633. [Google Scholar] [CrossRef]
- Lepparanta, M. A Review of Analytical Models of Sea-ice Growth. Atmosphere-Ocean 1993, 31, 123–138. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. IEEE Ind. Appl. Mag. 2017, 8, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747, 1–14. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the British Machine Vision Conferece, York, UK, 19–22 September 2016; pp. 124.1–124.14. [Google Scholar] [CrossRef]
- Cordonnier, J.-B.; Loukas, A.; Jaggi, M. On the Relationship between Self-Attention and Convolutional Layers. arXiv 2019, arXiv:1911.03584. [Google Scholar]
- Zhou, Y.; Wang, F.; Zhao, J.; Yao, R.; Chen, S.; Ma, H. Spatial-Temporal Based Multi-Head Self-Attention for Remote Sensing Image Change Detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6615–6626. [Google Scholar] [CrossRef]
- Cao, R.; Fang, L.; Lu, T.; He, N. Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 43–47. [Google Scholar] [CrossRef]
- Sallila, H.; Farrell, S.L.; McCurry, J.; Rinne, E. Assessment of Contemporary Satellite Sea Ice Thickness Products for Arctic Sea Ice. Cryosphere 2019, 13, 1187–1213. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Galin, N.; Studinger, M. An Improved CryoSat-2 Sea Ice Freeboard Retrieval Algorithm through the Use of Waveform Fitting. Cryosphere 2014, 8, 1217–1237. [Google Scholar] [CrossRef] [Green Version]
Dataset | Grid Resolution | Temporal Range | Gap | Theoretical Basis | Used for |
---|---|---|---|---|---|
ERA5 | 0.25° | 2012–2019 | / | 4D-Var data assimilation and CY41R2 model [42] | Training |
2020–2021 | Testing | ||||
CS2SMOS | 25 km | 2012–2019 | 10 April–14 October | Thermodynamic and hydrostatic-equilibrium [43] | Training |
2020–2021 | Testing | ||||
APP-x | 25 km | 2020 | / | Thermodynamic [27,44] | Comparison |
PIOMAS | / | 2020 | / | Thermodynamic [31,45,46] | Comparison |
SIMBA | / | 2020 | / | Thermistor string [47,48]. | Comparison |
Parameter Name | Abbr | Units | Parameter Name | Abbr | Units |
---|---|---|---|---|---|
Surface sensible heat flux | SSHF | J/m2 | Downward UV radiation at the surface | UVB | J/m2 |
Surface latent heat flux | SLHF | J/m2 | Top net solar radiation | TSR | J/m2 |
Instantaneous surface sensible heat flux | ISHF | W/m2 | Surface net solar radiation | SSR | J/m2 |
Surface net thermal radiation | STR | J/m2 | Surface thermal radiation downwards | STRD | J/m2 |
Sea surface temperature | SST | K | 2 m temperature | T2M | K |
Total sky direct solar radiation at surface | FDIR | J/m2 | Temperature of snow layer | TSN | K |
TOA incident solar radiation | TISR | J/m2 | Skin temperature | SKT | K |
Surface solar radiation downwards | SSRD | J/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Ji, Q.; Pang, X.; Fan, P.; Yao, X.; Chen, Y.; Chen, Y.; Yan, Z. Estimation of Daily Arctic Winter Sea Ice Thickness from Thermodynamic Parameters Using a Self-Attention Convolutional Neural Network. Remote Sens. 2023, 15, 1887. https://doi.org/10.3390/rs15071887
Liang Z, Ji Q, Pang X, Fan P, Yao X, Chen Y, Chen Y, Yan Z. Estimation of Daily Arctic Winter Sea Ice Thickness from Thermodynamic Parameters Using a Self-Attention Convolutional Neural Network. Remote Sensing. 2023; 15(7):1887. https://doi.org/10.3390/rs15071887
Chicago/Turabian StyleLiang, Zeyu, Qing Ji, Xiaoping Pang, Pei Fan, Xuedong Yao, Yizhuo Chen, Ying Chen, and Zhongnan Yan. 2023. "Estimation of Daily Arctic Winter Sea Ice Thickness from Thermodynamic Parameters Using a Self-Attention Convolutional Neural Network" Remote Sensing 15, no. 7: 1887. https://doi.org/10.3390/rs15071887
APA StyleLiang, Z., Ji, Q., Pang, X., Fan, P., Yao, X., Chen, Y., Chen, Y., & Yan, Z. (2023). Estimation of Daily Arctic Winter Sea Ice Thickness from Thermodynamic Parameters Using a Self-Attention Convolutional Neural Network. Remote Sensing, 15(7), 1887. https://doi.org/10.3390/rs15071887