Comparison of Weighted Mean Temperature in Greenland Calculated by Four Reanalysis Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Description
2.1.1. Reanalysis Data
2.1.2. Radiosonde Data
2.2. Methods
2.2.1. Calculation of Tm Using Reanalysis and Radiosonde Pressure-Level Data
2.2.2. Calculating Water Vapor Pressure
2.2.3. Height Conversion
2.2.4. Tropopause and Starting Height
2.2.5. Interpolation
2.2.6. The Influence of Tm Accuracy on Obtaining PWV
3. Results
3.1. Fifteen Years Precision of Tm Derived from Four Reanalyses
3.2. Temporal Variation of the Performance of Tm Derived from Four Reanalyses Validated by Radiosonde Data
3.2.1. Annual Variation Characteristic
3.2.2. Monthly Variation Characteristic
3.2.3. Daily Variation Characteristic
3.2.4. Hourly Variation Characteristic
3.3. Spatial Variation of the Performance of Tm Derived from the Four Reanalyses
4. Conclusions
- The ERA5 is the best in terms of the overall accuracy. The 15-year MBE and the RMSE of the ERA5 are 0.267 and 0.691 K, respectively. In the MERRA-2 , the MBE and the RMSE are −0.247 and 0.962 K, respectively. In the NCEP/DOE , the MBE and the RMSE are 0.192 and 1.148 K, respectively. The NCEP/NCAR is the worst, with an MBE and RMSE of −0.069 and 1.37 K, respectively. The error of the ERA5 corresponds to an uncertainty of 0.26% in the PWV, while this is 0.36% for the MERRA2, 0.43% for the NCEP/DOE, and 0.52% for the NCEP/NCAR. The ERA5 is the best data source for the direct determination of accurate and the development of models in Greenland;
- In terms of the inter-annual stability of the calculation accuracy, the ERA5 is the most stable, followed by the NCEP/DOE , the MERRA-2 , and the NCEP/NCAR . The accuracy of the ERA5 has been improving from 2005 to 2019. Meanwhile, the accuracy of the NCEP/NCAR and the NCEP/DOE has the following seasonal variation characteristics: better accuracy in the summer and autumn and poorer accuracy in the winter and spring; the ERA5 and the MERRA-2 are similar to the former two, but less obviously. There is a relatively strong correlation between the accuracy of the Ts and that of the that are derived from the four reanalysis models, especially the NCEP/NCAR. The weaker precision of the Ts in the winter and spring than that of the summer and autumn leads to the obvious seasonal variation characteristics of precision. When calculating the by hour, the results of the ERA5 are the closest to those that were estimated from the radiosonde data and have a high temporal resolution, which can accurately reflect the variation of the over a shorter timescale;
- In the spatial distribution of the , the results of the four reanalysis data are generally consistent; the central area of Greenland is smaller, and the edge of the island is larger. In comparison with the ERA5, the overall difference between the MERRA2 and the ERA5 is about −2 K. Meanwhile, the difference between the NCEP/DOE and the ERA5 is mainly concentrated on the edge of the island; the difference between the NCEP/NCAR and the ERA5 is relatively large on the whole island, especially in the south and the southeast.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Bamber, J.L.; Layberry, R.L.; Gogineni, S.P. A New Ice Thickness and Bed Data Set for the Greenland Ice Sheet: 1. Measurement, Data Reduction, and Errors. J. Geophys. Res. Atmos. 2001, 106, 33773–33780. [Google Scholar] [CrossRef]
- Lythe, M.B.; Vaughan, D.G. BEDMAP: A New Ice Thickness and Subglacial Topographic Model of Antarctica. J. Geophys. Res. Solid Earth 2001, 106, 11335–11351. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.; Meehl, G.A.; Han, W.; Yin, J. Effect of the Potential Melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and Global Climate in the Future. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1914–1926. [Google Scholar] [CrossRef]
- Chung, E.S.; Soden, B.; Sohn, B.J.; Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci. USA 2014, 111, 11636–11641. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Gong, T.; Feldstein, S.B.; Screen, J.A.; Simmonds, I. Revisiting the Cause of the 1989–2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes. Geophys. Res. Lett. 2017, 44, 10654–10661. [Google Scholar] [CrossRef]
- Sato, K.; Simmonds, I. Antarctic Skin Temperature Warming Related to Enhanced Downward Longwave Radiation Associated with Increased Atmospheric Advection of Moisture and Temperature. Environ. Res. Lett. 2021, 16, 064059. [Google Scholar] [CrossRef]
- Gaffen, D.J.; Sargent, M.A.; Habermann, R.E.; Lanzante, J.R. Sensitivity of Tropospheric and Stratospheric Temperature Trends to Radiosonde Data Quality. J. Clim. 2000, 13, 1776–1796. [Google Scholar] [CrossRef]
- Hagemann, S.; Bengtsson, L.; Gendt, G. On the Determination of Atmospheric Water Vapor from GPS Measurements. J. Geophys. Res. Atmos. 2003, 108, 4678. [Google Scholar] [CrossRef] [Green Version]
- Champollion, C.; Masson, F.; Van Baelen, J.; Walpersdorf, A.; Chéry, J.; Doerflinger, E. GPS Monitoring of the Tropospheric Water Vapor Distribution and Variation during the 9 September 2002 Torrential Precipitation Episode in the Cévennes (Southern France). J. Geophys. Res. Atmos. 2004, 109, D24102. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhang, K.; Rohm, W.; Choy, S.; Norman, R.; Wang, C.-S. Real-Time Retrieval of Precipitable Water Vapor from GPS Precise Point Positioning. J. Geophys. Res. Atmos. 2014, 119, 10044–10057. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W. GPS-Based PWV for Precipitation Forecasting and Its Application to a Typhoon Event. J. Atmos. Sol. Terr. Phys. 2018, 167, 124–133. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, H.; Xia, P. Exploration and Analysis of the Factors Influencing GNSS PWV for Nowcasting Applications. Adv. Space Res. 2021, 67, 3960–3978. [Google Scholar] [CrossRef]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Askne, J.; Nordius, H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Ross, R.J.; Rosenfeld, S. Estimating Mean Weighted Temperature of the Atmosphere for Global Positioning System Applications. J. Geophys. Res. Atmos. 1997, 102, 21719–21730. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xu, C.; Zhang, B.; Cao, N. GTm-III: A New Global Empirical Model for Mapping Zenith Wet Delays onto Precipitable Water Vapour. Geophys. J. Int. 2014, 197, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- VMF. Data Server—Products. Available online: https://vmf.geo.tuwien.ac.at/products.html (accessed on 24 September 2022).
- Boehm, J.; Werl, B.; Schuh, H. Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Boehm, J.; Kouba, J.; Schuh, H. Forecast Vienna Mapping Functions 1 for Real-Time Analysis of Space Geodetic Observations. J. Geod. 2009, 83, 397–401. [Google Scholar] [CrossRef]
- He, C.; Wu, S.; Wang, X.; Hu, A.; Wang, Q.; Zhang, K. A New Voxel-Based Model for the Determination of Atmospheric Weighted Mean Temperature in GPS Atmospheric Sounding. Atmos. Meas. Tech. 2017, 10, 2045–2060. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, B.; Yao, Y. A Global Model for Estimating Tropospheric Delay and Weighted Mean Temperature Developed with Atmospheric Reanalysis Data from 1979 to 2017. Remote Sens. 2019, 11, 1893. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, B.; Yao, Y. An ERA5-Based Model for Estimating Tropospheric Delay and Weighted Mean Temperature Over China With Improved Spatiotemporal Resolutions. Earth Space Sci. 2019, 6, 1926–1941. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, P.; Liu, T.; Xu, G.; Lu, Z. Development and Assessment of an ALLSSA-Based Atmospheric Weighted Mean Temperature Model With High Time Resolution for GNSS Precipitable Water Retrieval. Earth Space Sci. 2022, 9, e2021EA002089. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A. Global Estimates of Water-Vapor-Weighted Mean Temperature of the Atmosphere for GPS Applications. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the Suitability of ERA5 in Hourly GPS Precipitable Water Vapor Retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Guo, L.; Huang, L.; Li, J.; Liu, L.; Huang, L.; Fu, B.; Xie, S.; He, H.; Ren, C. A Comprehensive Evaluation of Key Tropospheric Parameters from ERA5 and MERRA-2 Reanalysis Products Using Radiosonde Data and GNSS Measurements. Remote Sens. 2021, 13, 3008. [Google Scholar] [CrossRef]
- Tang, G.; Long, D.; Behrangi, A.; Wang, C.; Hong, Y. Exploring Deep Neural Networks to Retrieve Rain and Snow in High Latitudes Using Multisensor and Reanalysis Data. Water Resour. Res. 2018, 54, 8253–8278. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China. Remote Sens. 2016, 8, 389. [Google Scholar] [CrossRef]
- Jade, S.; Vijayan, M.S.M. GPS-Based Atmospheric Precipitable Water Vapor Estimation Using Meteorological Parameters Interpolated from NCEP Global Reanalysis Data. J. Geophys. Res. Atmos. 2008, 113, D03106. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, P.; Ma, Z. A Comprehensive Evaluation of Soil Moisture and Soil Temperature from Third-Generation Atmospheric and Land Reanalysis Data Sets. Int. J. Climatol. 2020, 40, 5744–5766. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- NOAA Physical Sciences Laboratory. NCEP-NCAR Reanalysis 1. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 16 July 2022).
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- NOAA Physical Sciences Laboratory. NCEP/DOE Reanalysis II. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html (accessed on 16 July 2022).
- McIlveen, R. Fundamentals of Weather and Climate; Psychology Press: London, UK, 1991; ISBN 978-0-7487-4079-6. [Google Scholar]
- WMO. Guide to Meteorological Instruments and Methods of Observation; WMO: Geneva, Switzerland, 1996. [Google Scholar]
- Mahoney, M. A Discussion of Various Measures of Altitude, Jet Propulsion Laboratory. MTP Altitude Discussion. 2001. Available online: https://wahiduddin.net/calc/refs/measures_of_altitude_mahoney.html (accessed on 19 July 2022).
- World Meteorological Organization (WMO). Meteorology A Three-Dimensional Science: Second Session of the Commission for Aerology; WMO Bulletin IV(4); WMO: Geneva, Switzerland, 1957; pp. 134–138. [Google Scholar]
- Davis, P.J. Interpolation and Approximation; Courier Corporation: North Chelmsford, MA, USA, 1975; ISBN 978-0-486-62495-2. [Google Scholar]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Junzeng, X.; Qi, W.; Shizhang, P.; Yanmei, Y. Error of Saturation Vapor Pressure Calculated by Different Formulas and Its Effect on Calculation of Reference Evapotranspiration in High Latitude Cold Region. Procedia Eng. 2012, 28, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Murray, F.W. On the Computation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Nalli, N.R.; Morris, V.R. Accuracy Assessment of MERRA-2 and ERA-Interim Sea Surface Temperature, Air Temperature, and Humidity Profiles over the Atlantic Ocean Using AEROSE Measurements. J. Clim. 2020, 33, 6889–6909. [Google Scholar] [CrossRef]
- Simmons, A.J.; Untch, A.; Jakob, C.; Kållberg, P.; Undén, P. Stratospheric Water Vapour and Tropical Tropopause Temperatures in Ecmwf Analyses and Multi-year Simulations. Q. J. R. Meteorol. Soc. 1999, 125, 353–386. [Google Scholar] [CrossRef]
- ECMWF. IFS Documentation CY41R2—Part IV: Physical Processes. Available online: https://www.ecmwf.int/en/elibrary/16648-ifs-documentation-cy41r2-part-iv-physical-processes (accessed on 16 July 2022).
ERA5 | MERRA-2 | NCEP/NCAR | NCEP/DOE | |
---|---|---|---|---|
Source | ECMWF | NASA | NCEP, NCAR | NCEP, DOE |
Temporal coverage | 1950–present | 1980–present | 1948–present | 1979–present |
Release time | 2016 | 2014 | 1995 | 2001 |
Temporal resolution | 1 h | 3 h | 6 h | 6 h |
Assimilation scheme | 4D-VAR | 3D-VAR | 3D-VAR | 3D-VAR |
Horizontal resolution (latitude × longitude) | 0.25° × 0.25° | 0.5° × 0.625° | 2.5° × 2.5° | 2.5° × 2.5° |
Vertical resolution | 37 pressure levels (from 1000 to 1 hPa) | 42 pressure levels (from 1000 to 0.1 hPa) | 17 pressure levels (from 1000 to 10 hPa) | 17 pressure levels (from 1000 to 10 hPa) |
The number of pressure levels below 300 hPa | 20 | 21 | 8 | 8 |
Radiosonde Station | Latitude (°N) | Longitude (°) | Geopotential Height (m) | The Mean Number of Pressure Levels Below 300 hPa from 2005 to 2019 (Mean ± Std) |
---|---|---|---|---|
71906 | 58.1167 | −68.4167 | 60.2 | 62.9 ± 23.7 |
4270 | 61.1667 | −45.4167 | 34.0 | 57.3 ± 17.6 |
71909 | 63.7500 | −68.5500 | 21.9 | 70.6 ± 21.8 |
4018 | 63.9806 | −22.5950 | 52.0 | 43.5 ± 16.6 |
4360 | 65.6111 | −37.6367 | 54.0 | 36.7 ± 20.0 |
4220 | 68.7081 | −52.8517 | 43.0 | 55.7 ± 16.8 |
4339 | 70.4844 | −21.9511 | 70.0 | 27.7 ± 9.7 |
4417 | 72.5700 | −38.4500 | 3255.0 | 25.3 ± 10.1 |
4320 | 76.7694 | −18.6681 | 11.0 | 55.9 ± 15.7 |
71082 | 82.5000 | −62.3333 | 65.4 | 62.0 ± 20.0 |
Site | ERA5 | MERRA-2 | NCEP/DOE | NCEP/NCAR | ||||
---|---|---|---|---|---|---|---|---|
Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | |
04220 | 0.304 | 0.735 | −0.155 | 0.867 | −0.199 | 1.249 | −0.563 | 1.909 |
04270 | −0.013 | 0.702 | −1.152 | 1.555 | 0.862 | 1.592 | 0.411 | 1.385 |
04320 | 0.451 | 0.833 | −0.557 | 1.05 | 0.426 | 1.093 | 0.036 | 1.351 |
04339 | 0.600 | 0.896 | −0.472 | 0.978 | −0.017 | 0.912 | −0.242 | 1.087 |
04018 | 0.217 | 0.533 | 0.044 | 0.661 | −0.117 | 0.822 | 0.038 | 0.88 |
71082 | 0.096 | 0.491 | −0.065 | 0.712 | 0.413 | 1.106 | −0.274 | 1.342 |
04360 | 0.417 | 0.867 | −0.283 | 0.92 | −0.001 | 1.616 | −0.677 | 2.585 |
71909 | 0.124 | 0.516 | −0.249 | 0.789 | 0.07 | 0.868 | 0.153 | 0.957 |
71906 | 0.344 | 0.608 | −0.288 | 0.807 | −0.211 | 0.923 | −0.179 | 0.935 |
04417 | 0.134 | 0.728 | 0.706 | 1.284 | 0.698 | 1.299 | 0.602 | 1.273 |
Mean | 0.267 | 0.691 | −0.247 | 0.962 | 0.192 | 1.148 | −0.069 | 1.37 |
Min | −0.013 | 0.491 | −1.152 | 0.661 | −0.211 | 0.822 | −0.677 | 0.88 |
Max | 0.600 | 0.896 | 0.706 | 1.555 | 0.862 | 1.616 | 0.602 | 2.585 |
Reanalysis Data | Annual Mean Bias | Annual Mean RMSE | ||
---|---|---|---|---|
Mean (K) | Std (K) | Mean (K) | Std (K) | |
ERA5 | 0.267 | 0.318 | 0.666 | 0.226 |
MERRA-2 | −0.247 | 0.442 | 0.935 | 0.295 |
NCEP/DOE | 0.192 | 0.398 | 1.133 | 0.308 |
NCEP/NCAR | −0.069 | 0.423 | 1.368 | 0.526 |
Season | ERA5 | MERRA-2 | NCEP/DOE | NCEP/NCAR | |||||
---|---|---|---|---|---|---|---|---|---|
Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | Bias (K) | RMSE (K) | ||
Spring | 0.219 | 0.646 | −0.247 | 0.938 | 0.370 | 1.100 | 0.308 | 1.273 | |
Summer | 0.246 | 0.655 | −0.253 | 0.817 | 0.130 | 0.914 | 0.313 | 1.039 | |
Autumn | 0.234 | 0.648 | −0.235 | 0.891 | 0.065 | 1.100 | −0.389 | 1.375 | |
Winter | 0.310 | 0.726 | −0.351 | 1.009 | 0.102 | 1.213 | −0.510 | 1.507 | |
Ts | Spring | 0.290 | 1.657 | 0.034 | 1.713 | 1.154 | 3.424 | 0.330 | 3.175 |
Summer | 0.671 | 1.790 | 0.311 | 1.682 | 1.842 | 2.938 | 1.777 | 2.831 | |
Autumn | −0.210 | 1.291 | −0.342 | 1.286 | −0.940 | 2.543 | −2.285 | 3.367 | |
Winter | −0.196 | 1.627 | −0.372 | 1.841 | −1.169 | 3.398 | −3.950 | 5.149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Xiao, F.; Gong, L.; Lei, J.; Li, W.; Zhang, S. Comparison of Weighted Mean Temperature in Greenland Calculated by Four Reanalysis Data. Remote Sens. 2022, 14, 5431. https://doi.org/10.3390/rs14215431
Luo C, Xiao F, Gong L, Lei J, Li W, Zhang S. Comparison of Weighted Mean Temperature in Greenland Calculated by Four Reanalysis Data. Remote Sensing. 2022; 14(21):5431. https://doi.org/10.3390/rs14215431
Chicago/Turabian StyleLuo, Chengcheng, Feng Xiao, Li Gong, Jintao Lei, Wenhao Li, and Shengkai Zhang. 2022. "Comparison of Weighted Mean Temperature in Greenland Calculated by Four Reanalysis Data" Remote Sensing 14, no. 21: 5431. https://doi.org/10.3390/rs14215431
APA StyleLuo, C., Xiao, F., Gong, L., Lei, J., Li, W., & Zhang, S. (2022). Comparison of Weighted Mean Temperature in Greenland Calculated by Four Reanalysis Data. Remote Sensing, 14(21), 5431. https://doi.org/10.3390/rs14215431